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We present the Hartree-Fock approximation method for the many-body
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We investiqate the so-called Hartree-Fock theory arising in the study of
the structure of nuclii. The Hartree-Fock theory is an approximation method
of many-body problems modelling the interaction of nucleons (neutrons and
protons), which lead to nonlinear variational systems of elliptic equations
(the Hartree-Fock equations)./‘One of the main features of these problems is
the translation invariance which creates compactness difficulties which are

overcome by the use of the concentration-compactness method. "‘) . r
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This paper is devoted to a general presentation of Hartree-Fock equations and related

questions, and we will be mainly interested in the application of Hartree-Fock method to

Nuclear Physics.
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As it is well-known, the Hartree-Fock method was introduced by D. Hartree [23], V.
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Pock [17] and J. C. Slater [45] to approximate the ground state (and its energy) of general

2

N-body problems in Quantum Physics. And the main application of this method was, in Atomic
Physics, the study of Coulomb saystems (atoms and molecules) with the purely Coulomb
Hamiltonian of electrons interacting with static nucleii.

In Nuclear Physics, the use of Hartree-Fock methods to compute the ground state of
nucleii is quite recent (see for example the review papers by H. Bethe {7], J. W. Negele
[(41), [42]), P. Quentin and H. Flocard [44] and the references therein); among other
reasons, this delay was due to the lack of understanding of strong interaction and thus to

the difficulty of deriving realistic Hamiltonians to describe the interaction of nucleons

(neutrons and protons). Let us immediately emphasize several important differences between
the N-body Hamiltonians arising in Atomic and Nuclear Physics:

i) translation invariance of the center of mass in Nuclear Physics (and no 1-Body terms)

ii) very different 2-Body potentials (in Nuclear Phyaics the potentials have very short

range)

1ii1) large numbers of particles (nucleons).

»
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We will come back on these differences and we will mention others such as the use of
phenomenological density-dependent forces.

From the the mathematical viewpoint, these differences lead to equations (Hartree-Fock

equations, HF in short) of a completely different nature. And we do not know of any

reference in the mathematical {(or mathematic physics) literature dealing with HF equations
in Nuclear Physics, while there are many references for HF equations (or at least Hartree
equations) in Atomic Physics (see for example E. H. Lieb and B. Simon [30], E. H. Lieb
(291, P. L. Lions (321 and the references therein).

Our goal here is to present to mathematicians the basics of Hartree~Fock method
(section II below) together with the known mathematical results on HF equations in the
context of Nuclear Physics. As we will see, many problems remain by large open and we
present sometimes model simplified problems which, hopefully, should preserve the same
features than the exact HF systems of equations.

We first describe the HF method (section II) which approximates a linear problem with
a single unknown function in large dimensions by a nonlinear one in 3 dimensions with a
large number of unknown functions {(the computational advantage being obvious). 1If one is
interested in the ground state of a nucleus, the resulting problem by HF method is roughly

3

speaking a semilinear vector valued minimization problem with constraints on R~ which is

translation invariant. This is typical of problems which can be analyzed by the so-called

concentration-compactness method (cf. P. L. Lions [33], [34)). We explain in sections

IIT - V the existence results we can obtain, adopting a layered presentation to cover more
and more realistic problems (from the physics viewpoint). However, we do not consider in
these sections the possibility of spin-dependence and spin-orbit forces until section VI.
In section VIT we go back to the original Hamiltonians and we discuss the various

approximations including Thomas-Fermi classical approximation. Section VIII is devoted to
the search of solutions of HF equations with symmetries while section IX is a very small
contribution to the understanding of symmetry breakings of the nucleus. 1In section X, we
describe the external field method which is an important tool for the numerical computation

nf the ground state.
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Section XI is devoted to various considerations on time-dependent Hartree-Fock (TDHF

in short) equations such as the orbital stability of the minima of HF problems and the

study of other periodic solutions. From the mathematical viewpoint TDHF equations are

systems of semilinear Schr8dinger equations.

Finally, the last section (XII) concerns another approximation (somewhat related to
the HF method) known as the Hartree~Fock-Bobolyubov method (HFB in short) and we refer to
J. Dechargé and D. Gogny [14], J. G. valatin {47] for the Physics background of this
method.

There are important questions related to HF equations that we will not consider here
namely the question of numerical analysis of HF equations, the RPA system and questions
related to WKB approximations when N goes to 0. We hope to come back on these questions
in future publications.

Let us finally mention that we will not assume any knowledge of Quantum Physics from
the reader, but that we will try as much as possible to keep present the Physics
motivations. The authors would like to thank M. R. Dautray for bringing HF theory in
Nuclear Physics to the attention of the second author, and for stimulating their

interdisciplinary colloboration.
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I1I. Presentation of Hartree-Fock method

The basic object we consider is a A-body Hamiltonian that we denote by H, where A
is a positive integer: in Nuclear Physics, A = N+Z with N number of neutrons and 2
number of protons. The precise quantum system of A interacting nucleons is supposed to

be described by the Hamiltonian H
hz A
n == T o8+ ] Vixgmxy)

Zm i=1 i<j

where V is a given potential (function on ®), h is the Planck constant, m ig the
mass of the nucleon (we neglect here as usual the little differences of mass between

2
neutrons and protons) so %;' may be thought of as a given positive constant. The points
3

xi(1<i<a) are generic points of R” and the notation 4; means the Laplacian with
respect to the group x; of variables.
The Hamiltonian H is, at least formally, a self-adjoint operator acting on the

closed subspace of L2((m3H™) consisting of antisymmetric functions ¢ of x =

(x1,...,xh) € (l3)A i.e.

(2) B(Xg(1)reeeiXg(n)) = (—1)'0'0(x1,...,xA)

for all x; € R3 (1<i<A) and for all permutations o of {1,...,A} where Icl denotes
the signature of o©. We denote by H this subspace. This important constraint (2)
corresponds to the fundamental Pauli principle and is due to the fact that nucleons are
fermions.

Before going further in the description of HF method, let us point out that, for
physically correct Hamiltonians H, & should depend on spin and H should incorporate
spin-orbit terms and density-dependent 3-body terms. We deliberately ignore those terms in
this section to keep the ideas clear even if in next section the density-dependent term is
incorporated. Finally, we made no distinction between nucleons.

Of course, the interaction is mainly described by the choice of the potential V: let
us mention some typical examples in Nuclear Physics

l2

2
(3) Vix) = ae-ulx[® 4 gemvix , a,B € R, u,v>0

or
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(4) Vix) = ae‘“l"lu/lxl) + s."""'n/]xl), a,B € R, U,v> 0
or
(5) V(x) = ad, - BASy, a € R, B >0 .

All these choices (and there are many others) respect the fundamental character of strong
interaction: short range and intense at short distances. Notice that V is spherically
sysmetric and this is also a general feature of the potentials V used in Nuclear Physics.

Observe also that H, H are invariant by translation of the center of mass

- 1 ’f
x = = x, il.e.
i
A i=1
(6) If 8 € H T, 0m0(x,+h, X+h,...,x3+h) € H for all h e R
(7) Th(HO) - H(ThO) .

Of course, one wants to know the spectrum of H and its eigenfunctions. 1In
particular, a fundamental role is played by the bottom of the spectrum which is obviously
given by

2
(8) E= Inf((HO,O)Lz / b e, fnnlot ax = 1} .

This is the so-called ground state energy. We will write sometimes E® to recall the
dependence on the number A. Of course, the above notation is formal since (HO,O)Lz is
not defined in general on H but on a subspace which description depends on V: we will
ignore those technicalities in this section. Let us finally mention that any minimum of
(8) is called a ground state (in fact, we have made here so many simplifications that one
can prove there exists no minimum of (8) because of the translation invariance - see
section VII).

In Nuclear Physics, one has to deal with nucleii for which the number A of nucleons
is large (up to 240) and this is why the Airect computation of (8) is hopeless. Some
approximation is needed. The original idea of D. Hartree { ] was to consider more
functions ¢ (i.e. test functions @) of the form: &(xy,...,xp) = 121 @y{xy). But
clearly this choice contradicts the antisymmetry requirement (2). This led V. Fock {17;

and J. C. Slater [45) to a better choice of ¢ namely
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(9) lxqseee ) -—g( -nlel n 9g(1)(xy) = detleg(xy))

where ,,...,9, are A functions on I3 and the sum is over all permutations of
{1,...,A}. Such a choice of ® 4is called a Slater determinant.

Next, to check the normalization constraint of & in (8), we see that it is enough to

T aTy VI AN TR AR

impose

S

]
(10) IR3 vjoydx = 8,4 for 1<, J<A .

Indeed, we then have

. 2 1 lol+|o|
[ alelfax == T (-1 1 RN P DN R L
. RSA Al a,q N R3 o(i) o'(1) 1778
| Loy enlelelert
- — (=1) nmé
~ Al .0 i a(i)o'(4)
‘.
", L]
.:, _ z (- 1)|U|+|° | =1 .
. o=g"'
Therafore, the HF approximation consists in replacing E in (8) by
5 (1) = Inf{(u¢,9) ¢ = det(py(x4)), [ =8,
- Eyr n 4 2 / et(ey(x4)), /3 ?i%y 13 .
-
f- Observe that we have of course

a Ve
i)
A

(12) ECEyp -

Next, it is possible to rewrite (u%,%) 2 quite simply when ¢ 1is given by a Slater .
L

.

determinant. Indeed, we have for all i < j

v elax =1 v (- _pleteta ‘[ I 5 %500 % Yoo, (x )adx ) ‘
R3A i Al g,00 el R3 a(k) o'(k) "k k
. fks(v%(i)(x Y, Voo FNERILY
-4 ! nlel+leton Satror k) * L 3T0(s) %y ONIRCRILN
A g,0" ki R

=151 v 2
= =) | o, ., (x)] ax
Al 3 R3 o(i)

L7 1, 1ve 0] %ax
Lyl
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while

e lolZan = 1 T ey lalelot] ‘ ,
In?AV(xi xg) 0] ax = & zo,‘ " Cm ] 3 o0 % %0 ) 5 9%,)

a, kfi,3 R

* »

. £ f3 V]xi-xj)oa(“(xi)va(j)(xj)wa.(i)(xivo,(j)(xj)dxidxj
R™XR
= E £ f3 9903y 0 00| o, ) (9| Zaxay
R xR
'1—5 f f [ (x)cp' (x)V(x-y)o' (y)e (y)dxdy
Al o(1i) o(3) o(i) a(3) :
g _3 .3
R xR
And we obtain the following expressions
2,.3 *
(13) Eyp = Inf{E(o,,00000,) / 9 € LR, fn3 9,9 4dx = 6, for 1<4, 3<a}
with
52 A ( 2
(1) Elo,eeur0,] 32 121 ,R3|Voi| ax +

+ 1 [ |wi(x)|2 V(x-y)loj(y)lzdxdy +
3

i<
i<9 R3XR

L *
- 1T e tneltx) vixmyley (y)e, (y)axay

i<
i<j R3XR3
or equivalently
A
»2 2 1 2 2

(15)  Elogeenyo,) =52 ) F oAV [Tax v 2 T [ [ Jo, )] Vix-y) o (y) | “axdy +

: i 2, i 3j

i=1 R i,y 3.3

R xR

-1 ) f f [ (x)o'(x) V(x~y)w'(y)o (y)dxdy .
2 i 3 i 3

3.3
i,) R’ﬂR
the second term is often called the direct term while the third one is called the exchange
A
term. We will also often denote by 1t(x) the density of kinetic energy 7t = X |Vvi(x)|2,
A i=1

p(x) the density p = E 'v:(x)‘2 and pi(x,y) the density matrix op(x,y) =
A N i=1
mi(x)wi(y). Observe that we may simply write E as

[ s

i=1
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2
E(@yr00000,] = f o rax+ 2 [ p(x)Vix-y)ply)dxdy +
A 2m R3 2 13
R'xR
{16)
f v(x—y)lo(x,y)lzdxdy .

-1
2
22

RJX
The HF minimization problem (13) is nonlinear, nonconvex in general, with constraints
and is invariant by translations (translating at the same time all wi), rotations in

3

R and by unitary transforms of (’1""'°A) in CA. In fact, in the examples given in

next sections, the HF minimization problems will be slightly different (but still with the
same general features): an additional nonlinear term will be included in E corresponding
to a density-dependent nonlinear 3-body term in H. We will come back on the realistic

H Dbeing used in Nuclear Physics in section VII while we analyze in section IV - V HF
problems like (13) deduced from various examples of these realistic Hamiltonians by the
method described above.

The Euler-Lagrange equations corresponding to the minimization problem (13) may be

written as

2
h 1 1
= AOi + (D"V)Oi - fn3 Oi(Y)[E-V(X y) + 3 Viy=-x)]p(x,y)dy =

; 3
= § eij”j in R

for some hermitian matrix ‘eij) of Lagrange multipliers. Now, observe that if U is
unitary and diagonalizes (eij) then (;1,...,;;) = U(o1,...,wA) is still a minimum if

(®4,+-29,) minimizes (13). And (;1,..-,;A) now solves

bz -
(17) - 35 de,

- — - 3
»* - = R
+ (p V)@i x¢i eioi in

for some constant e;, where K is the operator defined by

xe(x) = [ o(y)(% Vix-y) + %V(y-x)]o(x,y)dy .
R

In particular, the constants €4,000,8, are eigenvalues of the operator

-8-
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(= QE.A + (p*V) - K). The system of equations (16) is called HF equations. We also remark

that €qs+..,0, are eigenvalues of the above operator Ha - Q;-A + (p*V) - K.
Notice also that, at least in all examples considered below, these eigenvalues CPFRRENL-
are non positive.

We conclude this section by a brief discussion of the validity of HF method: notice
that it is an approximation of the "true” problem (8) and that, a priori, it gives only a
bound from above of the ground state energy E (recall (12)). On the other hand, there
are various reasons to use it and thus study it: first of all, it gives good numerical
results and there are almost no substitutes to compute the ground state on E. A more
"gcientific” reason is its asymptotic validity as A + +» (for general V) as proved by

E. H. Lieb and B. Simon [30], [31): we will come back on this point in section VII.
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III. A model case

To give an idea of the type of HF problems which are encountered in Nuclear Physics,

we will consider in this section a very simplified problem: we build a scalar problem
(A = 1) with Skyrme's interaction as in D. Vautherin and D. M. Brink [48] skipping the
spin dependence. 1In the next section, we will consider the general case of HF problems
with Skyrme's interaction but without spin dependence. The functional (16) becomes in this
case

hz 2 a 4 8 6

E(e) = 55 [ 1Ve]%ax = 2 [ Jlo|"ax + 2 [ [o| ax +
2m R3 4 R3 6 l3

(18)

21001240 o § 22
+-}fa3|°| [90|“ax + 32 n"vM |“ax

where a, B, v, § are constants such that: a > 0, 8> 0, Yy> 0, Y + & > 0. This
functional corresponds (essentially) to a potential V of the form (5) with the additional
8 6
term (¢ IR3I¢| ax).
Then the HF minimization problem becomes

(19) I=1Infl{E(e) /o X, ftslolzdx =1}

where the minimizing class X is defined by
* 2 2
x= (o cn' @), [ lo]"Iv0)%ax < =} .
R
Before stating our main existence result, let us recall that a minimizing sequence (on)

is a sequence (¢,) in X satisfying

2
fn3;@n| dx =1 , E(e)) 2T .

We have the
Theorem III.1: For every minimizing sequence (¢,), of the minimization problem (19) one
can find y, in R’ such that the new minimizing sequence gn(~+yn) is relatively

compact in H‘(la) if and only if I < 0. 1In particular, if I < 0 there exists a

My ') = L2, v L))
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minimum of (19). 1In addition, I < 0 if and only if a > ay where a, is a positive
constant depending on :3. B, Y. 6§, which goes to 0 as :3. goes to 0. If a ¢ ao
there are minimizing sequences converging to 0 in LP(I?) for 2 < p ¢ ». Finally if
@ < a there is no minimum of (19).
Remarks: i) Further properties of minima of (19) are given below.
ii) Scalar problems like (19) have already been studied by several authors: we will only
mention the works by W. Strauss [46], C. V. Coffman {13], H. Berestycki and P. L. Lions
[5), P. L. Lions [40). The methods in these works yield only the existence of a minimum
if I < 0, using a symmetrization argument which is outlined in the proof of Proposition
IIT.2 below and which no longer applies to more realistic problems such as the ones studied
in the following sections.
iii) In fact it is possible to treat the case h = 0: in that case every minimizing
sequence in the class {¢ € L2(R%); (Re 9)2, (Im 2 en (@), f alo'zlvolzdx < w)} ig
relatively compact say in L2 up to a translation and there exizts a minimum which is the
limit of the minima of (19) as h + 0. o

Before proving Theorem III.1, we prove the

Proposition II1.2: Assume that I < 0. Then there exists a minimum of (19) which is

. o e " et S
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spherically symmetric, positive and decreasing with respect to r = |x|.
Proof: 1In view of Theorem III.1, there exists a minimum ¢ of (19)., Then considering the
spherical nonincreasing rearrangement of IQ', one checks easily that E is decreased and
thus a minimum with the above properties is found. o

We now turn to the

Proof of Theorem III.1: We are going to apply the concentration-compactness arguments (cf.

P. L. Lions [33]). Hence we introduce

(20) I, = Inf{E(e) / @ € X, ,rn3|o|zdx = 1)

where ) > 0. Then, applving the arguments of [33], we deduce that any minimizing sequence
of (19) is relatively compact up to a translation if and only if I the following
condition holds

(S.1) I, ¢TI, + 14 » ¥ae(0,1) .

-11=
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We will not redo the proof in (33] but we will only make a few formal observations in

sl PSP ORI

order to explain the role of (S.1). The main difficulty in the above statement is the "“if"
part: in (33], it was proved that if a minimizing sequence is not relatively compact up to
a translation then roughly speaking it breaks at least into two parts which are essentially
supported in two disjoint closed sets whose distance goes to <. Let us denote those two

1 2 1. 2 1,2
parts by o , 9. S0 ¢ ~ @ + 9 we may assume that fn3(vn) ax » a,

BN S e

: { (02)2dx + 1-a. The above dichotomy then yields

R .} n n

. I = lim El¢_ ] >
n n

and if (S.1) holds this is not possible.

1 2
I:m Elo ] + 1::\ Elo;) > I + I, o

The arguments of [33] apply: the only modification consists in checking that if ®n

is bounded in H‘(l;), f 3|vn|2|Von|2dx < ¢ (indep. of n) and ¢, converges weakly
R

in H' to some ¢ then

Y 2 2 [ 2,2
Lin X[ 1o 19|19 |%ax + == 7le %] “ax >
n 4 R3 n n 16 R3 n

2 2 § 22
>,—1—fn3|v| |9e| dx+ﬁfn3l‘7|v| fax .

The proof of this claim is a simple consequence of Lemma III.3 which is stated and proved

after the proof of Theorem III.1.

We next show that (S.1) is equivalent to I < 0 and that one has always IA < 0:

indeed, let ¢ € D(R?) such that [ 3|w|2dx = A and let g (x) = 0™ 2% for o> 0.
R

Obviously
L ocpe = L B [ Jivel2ax - = 21 felfax) +
A o T 2 m 3 JERRT I
[

1B 6 1 2) 12 22
vz (e [ Slel%axy + S (L[ Llel®ivel%ax + 35 [ L 1V]el|%ax)
g R [+ R R

and thus letting ¢ + +», we prove that I, € 0. Wext, by a similar scaling argument we

see that for all 9 > 1, X > 0
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2
1/3.h 2 ] 4 8 6
15, = Inf{6 / [3; f 3|V9| dx) + 6(- ry / 3|Q| dx + ry f 3|¢| dx] +
R R R
+ 01’3tlf Slet?1vel%ae « &1 (9le1?Paxiseex, [ lol%ax =2} .
R R

Now we claim that if I, < 0 the infimum in I, may be restricted to those ¢ satisfying

2
Ale) = B / IVoIzdx +1f |¢|2|v.|2dx + & ‘Vl,lzlzdx > v for some v > 0. Indeed if
2m ll3 4 R3 R3

16

+ 0, then by Sobolev embeddings

there were a minimizing sequence of I, that Ale,) -4

LY 0 in IP(®Y) for 2 < p <6 (in fact p < 12 here) and so f‘vn|4dx % 0. But this

means that IA > 0 and our claim is proved. Hence, we deduce

I., <0 Inf{E(el/e € X, ACe) > v, [ .lol2dx = A} = 61
81 23 X

and this inequality holds if Iy < 0. Then, a straightforward argument proves that (S.1)
is equivalent to I < 0.
Observe also that the above scaling argument shows that if I = 0, there is a
minimizing sequence (namely 9; as O + +®) which converges to 0 in P for 2 < p € =,
We next dls;usa the inequality I < 0. It is obvious that I < 0 for a large
enough. So let us denote by 8y = o(mz, B, Y, §) the least positive constant such that

I <0 for a > a, {(observe that 1 is nonincreasing with respect to a). We have to

prove that ag > 0 or in other words that I = 0 for a small enough. But using Sobolev

and Holder inequalities we find for ¢ € X, [ 3|o|2 =1
R
ﬂz g
sm>co-2;(f lo]ax) -—(j lol ax) ! (j lol8ax) .
2
A simple study of the function of one real varjable C, ;%-t1/3 - % t1/2 + % t proves

that I = 0 for a small enough.
2
The fact that ag goes to 0 as %}-* 0 can be seen from the expression of E[°o]
given above.

Finally let ac<a if there exists a minimum of I for @ we can test the

o'
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minimization problem (19) for d<acx % with this minimum and this gives a negative
value for I contradicting the definitirn -~ Qe a

lemma II.3: Let tn » 0 converge in L1 tosome £ > 0, let g, converge weakly in

2 1

L

to some g and assume that for |9n|2 is bounded in L'. Then f£|g|2 € L' and we

have
2 2
HT"I £le 1> [ £lgl® .

Proof: let M, R € (0,»)., We introduce a symmetric convex function .n satisfying
0 < o (z) < |z]2, o(z) = |z]2 tor |z| < R, ¢p is Lipschitz. It is clearly enough to
prove that we have

2
linm [ £ ]g | >

I/ £ o9 .
n (£<M)

In order to do so we first observe that, without loss of generality, we may assume that
OR(qn) converges weakly in L2 to some h which satisfies h > OR(q).
Next, we remark that we can conclude if we prove that
+
| (=g e (g ) 20 .
(£<M) n R°n n
But this integral is easily bounded for all § > 0 by

§ [ o (g +m f(f-fﬂ)G)'R(gn) <

2
< 6 I lgnl + C(H'a) [(£_£n>6)'gnl

\/
< c§ + c(M,R){meas (f-fn » §)172

-1
<+ cmRIE 2 f |£-fn|

and we may conclude. o
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IV. Skyrme's interaction without epin

In all this section we will consider only the so-called Skyrme's interaction
thus following the approach by D. Vautherin and D. M. Brink [48]. To simplify the
presentation we skip the spin dependence and we refer to section VI for the complete
problems.

We begin this section by a special case which corresponds to the simplified situation
where no differences are made between neutrons and protons (N=2, no Coulomb interaction

between protons). In fact, even if isospin if "fixed" for neutrons and protons at the
level of the original A-body problem, one can allow in the Slater determinant wave-
functions which depend on the isospin and then one is also led to problems of the following

form. In those cases the functional (16) becomes

2
a 2 [}
4 (21) Bligreenrt,) = / 3 %; T-3 c2 + % T + %3 90| + g-psdx
R

A
2, 5. N |n1|2. The constants &, 8, v, § satisfy
=1

A
where 1 = J (79,
i=1
(22) 2>0,8>0,686>0,B+svy>0 .
As in the preceding section, only the last term % f 3 padx is not an obvious consequence
R

of the HF method as described in section II: indeed this term (and analogous terms in this

sectinn and in the next one) comes from a 3-body term which is equivalent to a 2-body
density dependent term in the Hamiltonlan H. We will come back on this point in Section
VII.

The HF minimization problem may then be written as

1= Inf(zloi,...,vAl /e € H‘(ns), [, erax < =,

‘3
(23)
-
- ‘ ‘ .
In3 9 008x = &, for 1< 1,3 <A)
Before stating our main result on (23), we need to introduce a few notations: let

M= (mij) be a nonnegative hermitian matrix, we introduce the following minimization

problem
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K
‘o4

1,3
I, = Inf{Elw see0,9,] /9, €H(R), IR, prax < =,

(24)
In’ 91';4x =m, for 14, 3¢ A} .
Then, we observe that since E is invariant under unitary transforms of (’1"""1) then
for any unitary matrix U in ch
(25) IH = Iu"uU

80 we may choose U so that u™!

MU 1is Aiagonal and if (‘1""'“1) are the sigenvalues
of M, M; = diag(mq,...,m;) is the diagonal matrix with (my,...,m,) as diagonal entries
then Iy = Iuo and we will denote Iy=™ IHo = I(n1,...,nl). With these notations, I = 11

= I(1,400,1) where 1= (511)-

S Y T HEEN.Y ¢ "y T T, S, RN T Tt T T T TR W 0

rinally, we will say that a sequence (Q?,....v:) in the minimizing set is relatively

v,

compact up to a translation if there exists y" in R such that (;?.-'-.;:) -

(92('*1"),--o,v:('+yn)) - which is still a minimizing sequence - is relatively compact

tn #' ana |V 3%|%, 5" T are compact in L' (with obvious notations).

TT T

=

Theorem 1IV.1: i) The infimum I € (-»,0] and for all R < ® <there exists Cq ¢ * such
*
that f.? P+ T+ ptT dx € CR if 8[01,-0-,QA] < R, f.? '1dex = 513"1,3)’

f PT dx < =,
‘3

Y 5y o

ii) Bvery minimizing sequence of the problem (24) is relatively compact up to a

:

translation if and only if the following condition holds

R

P

(26) 1< I{mg,een,my) + I(1-mg,ees,1-my) for all (my,.cc,my)

such that 0 <m < 1 for 1<1<A 0¢] m, < A. Of course, if (26) holds then there
i

is a minimum of (23).

AT

2
iti) If a < a; where a;, is some positive constant depending on A, %—-. B, 0, §; then

»

I =0 and there is no minimum of (23).

Remarks: i) In general, we do not know how to check (26). The answer seems to be highly
dependent on A in view of the numerical computations which have been performed. In any
case, checking conditions (26) when numerical computations of ground states appears to be a

good test since (26) means a certain stability of the absolute minimum.



ii) In fact, as seen below from the proof which again relies on the concentration-

compactness arguments [33), the concentration-compactness method not only shows the
necessity and sufficiency of (26) but also predicts what can happen on minimizing
saguences. Let .3 give a few examples: 1) suppose I = 0, then there are minimizing
sequences converging to 0 in 1P for p > 2 and the density vanishes (in the sense of
(33]),

2) suppose (to“;implify) that there exists a unique set of values (;1,...,;A) such
that 0 <m < 1 for 1<1<A,0<§Ei
(26) holds for all (my,...,mp) # (;1,...,;;). In fact, this over simplification implies

<A, 1= I(m1,...,mh) + I(1-m1,...,1-mA) while

m1-...-;A but we will jignore this for the sake of the argument. Two cases may occur: the
simplest one is when the two minimization problems 1(31,...,;;), 1(1';1""’1';A) satisfy
the analogous of the subadditivity conditions (26). Then, there are minimizing sequences
of (23) which are not relatively compact up to a translation and any such sequence

(v?.-.-.o:) breaks into two parts:

el =¥l +x] ., 1<ci1<

where &2, x? are relatively compact up to a translation and are minimizing sequences of
I(iﬂ,...,;;), I(1-;1,...,1-;;) and thus (extracting subsequences if necessary) converging
to minima of these problems. 1In addition, roughly speaking the distance between the
supports of |W:‘2 and |x:|2 goes to ® as n + =, The second case concerns the
situation vhei 1(31,...,;;t (or 1(1-;1,...,1-;;)) does not satisfy the analogue of
(26): then we may continue the above argument and in turn W? can break into two

pieces. If we knew completely the function I(m,,...,mn), it would be possible to
determine completely the behavior of minimizing sequences: vanishing, dichotomy into n
parts converging to minima of subproblems, dichotomy into n parts with (n-1) pieces
converging to minima of subproblems and one piece vanishing.

i11) Again, we can treat as well the case h = 0 and the analogue of i) holds.

-17=
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At this stage, it is interesting to briefly explain how all the above phenomena are

related to various physical situations which essentially depend on the set (N,Z)
characterizing to numbers of neutrons and protons. In fact, it is experimentally observed
that the existence of a nucleus crucially depends on the set (N,Z) as we explain now with
the help of Figure 1 below taken from M. Effer [(15]. 1In the plane (N,Z) the stable
nuclei (infinite life-time) are indicated in black. Admitting that the A-body Hamiltonian
and the Hartree-Fock approximation correctly represent the reality, these values of (N,Z)
would correspond to "nice” minima in the problems we are considering here and below (the
strict subadditivity inequalities should hold for such values). The dotted grey zone
corresponds to unstable nuclei which are known today and whose life-time may vary in

between 1015

years and gsome milli-seconds. Let us mention that a little more than 2000
nuclei are known: about 300 exist in nature while 1900 were "built"™. Between 2000 and
4000 more nuclei are expected to exist (mostly unstable). Finally, the majority of nuclei
currently observed in nature (263 out of 287) are stable. The white zone, delimited by two
lines, correspond to (unstable) nuclei which are to be discovered. For HF problems, those
unstable nuclei correspond to minimization problems where the strict sub-additivity
inequalities do not hold and minimizing sequences break into severl “compact™ pieces (see a
precise example below). The two lines, the so-called "drip-lines", beyond which no nuclei
are expected to exist, are precisely associated with the loss of exactly one neutron

(8, = 0) or one proton (Sp = 0). In our context, this situation would correspond to the
case when (;1,...,;A) = (1,0,...,0) in Remark ii) above i.e. minimizing sequences break
into two parts: one which is "compact" and converges up to a translation to the minimum of
a 1(0,1,...,1) while the other part vanishes. The zone beyond the drip lines should
correspond to similar phenomena where minimizing sequences break into several pieces one of
which vanishes.

In order to illustrate the situation concerning the unstable nuclel we shall restrict

144

60 Nd(Z=60,N=84) whose

ourselves to two examples. The first one concerns the nucleus

lifetime is quite long (about 2 x 10° years). This nucleus is unstable and eventually

decays, emitting an alpha particle (elementary nucleus composed of 2 neutrons and 2
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protons), into the two stable subsystems ;;o l. and G and one writes
144 140
N, * X +a .
60 % sg °

The other example is provided by the nucleus ;:o Pu  which spontanecusly fiss ons into two

stable nuclei
240 134 106
Pu * T + M N
94 52 42
In our context (once more admitting the models are good enough to reproduce these fissions
and this geems to be the case in view of HF numerical computations) this obviously
corresponds to minimizing sequences breaking into two parts which converge (up to

translations) to minima of appropriate subproblems. 1In fact, if we were to use a nuclear

force realistic enough and if we knew completely the functions I(n,,...,nl) we would be

able to predict all unstability patterns (or confirm the numerical computations at least ..).
We wish to conclude these physical considerations by i{ndicating that HF minimization
problems (with possibly the extension to HFB problems - see section XII) lead to numerical
computations which reproduce quite well at least parts of the diagram below (stable nuclei,
some unstable ones, drip lines...): the restriction being essentially due to the
difficulty of solving numerically these problems. And we refer to J. F. Berger, M. Girod
and D. Gogny [6), M. Girod and B. frammaticos ([21], D. Vautherin and D. M. Brink (48], P.
Ouentin and H. Flocard [44], J. Negele [41] and (42]) (and the raferences given therein) for
various extensive computations. Another observation consists in remarking that for
unstable nuclei in fact several different fragmentations are often possible with one being
more probahle (statistically) and these various choices could be related to dichotomies of
minimizing sequences corresponding to values ot ;1""';A strictly between 0 and 1.
rinally, we wish to warn the interested reader that the above considerations indicate that
gtrict subadditivity inequalities may be very hard to check and in addition should depend

in a sensitive way on A (or (N,Z) for problems below...).
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Figure 1

Proof of Theorem IV.1: It is enough to prove the existence of CR. Remark that

3 A 2_8 1 "2, By
AT 190] riAR |§ Re(oivvi)l >S5t 20 .
a 2,8 2 n? B+y
and 7 p- < 3 p” + Cla,8)p so B['1"""A] > fn3 o T+ ( 1 Yot dx = C(a,8) and i) is

easily deduced. Again part ii) of the above result is a direct application of the
concentration-compactness argqument ([ ]). We will not give the proof but instead we will
explain the main idea used to prove the sufficiency of (26). 1If (o?,...,o:) is a
minimizing sequence of (23), then we apply the lemma below (proved in {33)) with the
probability P, on ® whose density is % pn (i.e. the density in Nuclear Physics
terminologyt)

lLemma IV.2: Let (Pn)n be a sequence of probability measures on R, Then there exists a

subsequence that we still denote by P, such that one of the following properties hold

=20~
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1) (compactness up to a translation) Iy" ¢ RY, ve¢ > 0, IR ¢ =
P (B(y",R)) > 1-¢

ii) (vanighing) V¥R < =, SupN Pn(B(y,R)) 30
YER

iii) (dichotomy) 3a € (0,1), ¥€ > 0, ¥M < =, aao > M, 3y, € A, iR, % @ such that
e (Bly ,Rg)) = al <&, | (Bly ,R)®) = (1-a)] < e o
A

1If P, or o, vanishes (case ii)) then (see [33)) o;,...,wn converge strongly in

Lp(lla) to 0 for 2 < p < 6 (actually < 12) and thus I = lim E[tv:‘,...,:pf:] > 0. Since
one checks easily by a scaling argument as in the proof of Theor:m IIT.3 that Iy < O,
this means I = 0 and it contradicts (26).

If dichotomy occurs (case iii)) then we translate (o;,...,wg) by yn and roughly
speaking we split these functions into their "restrictions" to B(yn,Ro) and to B(y",Rn)c

and we denote by (w;,...,wh), (x;,...,xﬁ) the two parts. We may assume that

i* i* -
IR w Yo dx R omy I 2 ann a8y - myy

for some hermitian matrix (mij) such that {essentially) | mi; = oA. The contradiction
i

with (26) is obtained by remarking that

1 A 1 A 1 A
1= lim E[vn,...,wn] > lim E[wn,...,wn] + lim E[xn,...,xn]

> IM + I1_M .
Therefore, if (26) holds then automatically we are in case i) and we conclude as in [33]
provided one observes that since Y is not assumed to be positive there is a little
difficulty to pass to the limit which is solved by the
Lemma IV.2: Let og,...,vg converge weakly in H1(R3) to w‘,...,oA. Assume in addition
that p, . is bounded in L'(R}). Then pt e LY (®}) ana

27y lim [ s

ptdx>f _prax, Mm [ _p T -~ 1 |vp |2dx > [ ot - 1 lelzdx .
n 3 — 4 n 3 4
n R R n R R

3 non
Proof: The first part of (27) is a consequence of Lemma II1.3. The second part will

also be after a few considerations., We introduce the nonnegative, convex, quadratic

functional for all z € CA, g = (01,...,0A)

2
Q(z,Vg) = (;LQL——— (§ tvoilz) - 1 3) Re(ziV¢:)|2 .

+1z}2) (1+]2|2) i
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Observe that Q(¢,99) = (1+4p)” '[pT - 7 |90]€1. N
. - (o A - A . 1203 I

Now, if we set @, (@preerog)e 9 {Q(Gn.Vﬂn)) + 9, is bounded in L°(R’). and AR

2

we may assume that 9, converges weakly in L to some g. If we show that

1
g 2 {Q(B,Vo)}/2 where @ = (w1,...,oA), then applying Lemma III.3 with f, = (1+on) we

conclude easily showing the second half of (27) on any bounded domain of R

2
|

(this is *
1
enough since pT - |90]° > 0).
1
Since Q(z,VUYQ is convex for all 1z, it is clearly enough to show that for any

v e D(rY)

1/ 1/
2 - 2
!R3 vlQ2(g ,v8 ) - @2 (8,98 |ax » 0 .

1
Since Qé is continuous on bounded sets, we introduce the local modulus

1 1
wR(tS) = sup(lQ/z(z,p) - Q/z(z+h,p)| / lpl <R, |z| <R, |n| ¢ &}

for all 8§ > 0, R =
and we split the above integral into integrals over several sets that we bound as follows:
+ on (IVﬂnl >R or |vg|l > R or |Bnl >R or |gl >R}, the integral is bounded
by

cy)

V/
< f(_) W(|V5n| + |vglrax < C(y) meas(-) 2 ¢ "

+ on {iVﬁnl, %Vﬂl,iﬁnl,{ﬂ{ < R; |¢n-ﬂ| > 8§}, the integral is bounded by

1
c | w(lvgn|+[vn|)dx < c(y) meas(lnn-ﬂ)l > GY@ +0
(g -#1>6)

* on (lVBn'. |vg], 1ﬂn|, lg| < R; |ﬂn-ﬂ| ¢ §}, the integral is bounded by
w () / 5 Yax = C o (8) .
R
This enahles us to conclude easily. Another possible proof (communicated to us by
. 1 1 . fo s
H. Brézis) is the following: since p T - = ]Vpnlz, pT - ¥ |90]2 are nonnegative, it is

enough to show that for all M

|2dx > f pT - % |Vp|2dx .
(lo*<m)
1

. 1
Lim f o 1 -7 1%,

(1ot ]em)
1 i

n

o >
Wy

i
Now, by Egqrov's theorem, for all € > 0 there exists a set E such that its complement

has measure less than € and w; converges uniformly to ¢ on E for all i. Denoting
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A
by F=EN(N (|01| < M)), 1t is enough to show that
i=1

lim IF T, " % |Vpn|2dx > fF pT - % |Vp|2dx .

n

Obgerve now that Pne wé

(for 1< i < A) are uniformly bounded on F and converge

uniformly to p, wi. Therefore, we just have to prove
I:m [p Q8,98 yax > [_o(s,"8)ax .
To this end, we write ﬂn = # + ¥, and we obtain

Qg8 ) = 0(g,V8) + (8, ) + 20(8,78,VV )

ARk atan . o

where Q(z,.,.) is the gymmetric bilinear form associated with le; for any z € ¢k, 1In
particular we have
Q(G,Vﬂn) 2 Q(8,V8) + 2Q(B.VS,V¢n)

and to conclude we observe that

[o 28,98,70 dax = [ HeTy ax

2 uhile an converges weakly in L2 to 0. (A

where H is gome fixed function in L
similar proof works for Lemma III.3). [a]

We next consider the more general situation of a nucleus with N neutrons, 2
protons (8o A=N+Z). We may number the wave functions Py in such a way that PqeneesPy
correspond to neutrons while @y, q4,ee:,0p correspond to protonas. We also denote by pn,
rn, on(x,y) {resp. pp, rp, pp(x,y)) the various densities of neutrons {(resp. protons)
i.e.

N

2 N 2 R .
p_(x) = ) Iwi(x)l P T (00 = ‘E lVoi(x)l » P txey) = 1 ¢, (x)o, (y)
i=1 i=1 i=1

A 2 LY 2 A .
p ) = T Je ol tx) = 1 |V 0]%, e tx,y) = I e (e (y) .
P i=N+1 P i=N+1 P 1=N+1

In this general case, the functional to be minimized is
2 x
%o

-1 h . _ 0 AV i 2
(28) Blog,ene g ) = [ 3 32 1= 5= (01 + 599007 = (xg+ 2o+ 9] +

Q
™

Y 2 _§ 2 2
A SRR IR IR 3 {v0| e (7o 17+ lVopi ) o+

r-3
&

o
-

2 2
e 1 e 1 2
vy 0 e e dx ¢ o I P U0 rrT ety dxdy - 3 { f3 iy T |pp(x,y)[ dxdy

R’XR3 R xR
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A w - 'cl,t°>0,x°£(0,1),G,B,Y,6,t1>0.

Obgerve that the last two terms obviously correspond to a Coulombic interaction
between protons. Let us alsc mention that very often the last term (Coulomb exchange term)
is neglected: this makes no difference on the type of mathematical results we prove.

Still about the form of the functional it is worth remarking that the parameters a, B, v, §
are not completely independent since in fact some of these terms are exchange terms.

The first situation we studied in this section corresponds to the situation when the
Coulomb term is neglected (e=0), N=Z and Dn = Dp - % ] tn - Tp o % T. Pinally, we

would like to remark that 3[01,-.-,0A] is not invariant anymore under all unitary

transforms of (91""'°A) but only under the transforms of the form
n

{29) u (o

where U  (resp. Up) is a N XN (resp. 2Z x %) unitary matrix.

And we consider now the HF minimization problem

I = Inf{E[o,,.00,9.) | @, € H‘(n?), f pTAX < = ,
1 A i R3

(30)

| . e9dx=6 . for 1¢4, J <N and for N+#1< i, § € A}
2 1 13

together with its extension

1,.3
I, = Inf{E(e ,..00,] | 0, eB(R), [ yprax <=,

u3
(31)

AN AN g

L]
< < +1 < <
In3 v1¢jdx = m” for 1 i, 3 € ¥ and for N+1 i, § < a}

v
i

. M 0 C
- where M = (mij) = (on M ) is a block diagonal hermitian nonnegative matrix. Using ol

. unitary transforms of the form (29), it is clear that we may still diagonalize M into

diag(my,...,my) where my > 0 for all i ¢ {1,...,A}s Therefore Iy = I(mg,ee.,mp)  where ;{:“
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I(m1,...,nA) = Inf(z[91,...,wnl | o H (R”), fl3 dx ¢ » |,
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‘
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*
- < < . LY
f‘t3 qivjdx m161j for 1<1i, j <N and for N+1 < i, j < R} i

o
LA
(YA

Observe also that the orthogonality conditions in (30) still enable us to write down Euler-
Lagrange equations (the HF equations) where, up to a unitary transform of the form (29),
the matrix of Lagrange multipliers (e; in (17)) is diagonal and the Lagrange multipliers
are eigenvalues of self-adjoint operators.

Before going further in the mathematical analysis of (30), we would like to mention
the way the parameters to, t,, X a, B, vy, § are chosen in realistic computations. The
parameters are adjusted by a simple fit to the binding energies and equilibrium densities
of some fixed nucleiil (egssentially oxygen-16 and lead-258). Once this fitting is performed
(see the tables in D. Vautherin and D. M. Brink (48]), one can compute all other nucleii by
solving numerically (30).

It is clear that conditions on the parameters are needed in order to insure that
I > «» (and that minimizing sequences are bounded)}. The boundedness of I and the
solution of (30) are analyzed in the
Theorem IV.4: 1) Assume that a > (B+8§)/2, a + SAy > §+B. Then for all N, Z the infimum
I¢€¢ (-»,0] and for all R > 0 there exists Cr » 0 such that for all (°1""'°A) in
the minimizing class satisfying B[o,,...,vkl < R then f 3 p+T + p1T dx € Cge

ii) Assume that a < (B+§)/2 then, for all N, 2> 1, I : -,

i11i) Agsume that the conditions given in i) hold. Then any minimizing gequence of (30) is

L

o

relatively compact,up to a translation if and only if the following condition holds

I« I(m1,...,mh) + I(l-m1,...,1-mA) for all mi € [0,1){1<i<A)

R 3

(32) A
such that X m, € (0,A) .
i=1

In particular, if (32) holds, there exists a minimum of (30).
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Remarks: 1) The analogues of the remarks given after Theorem IV.1 still hold here.

ii) There are other conditions than & < (B+§)/2 which imply that I = -, We mention
only this one to emphasize the following phenomenon: take N=Z, e=0 then in this case it
is often assumed in the Physics literature that it is enough to consider (91,...¢pl) such
that L= op = % P, Tn = Tp = % T without changing the value of 1. And this is
completely false in general (it would be certainly of interest to understand completely
this kind of symmetry breaking). 1Indeed, choose a, 8, Yy, § > 0 so that

a < (B+5)/2 , (a+y) > (B48)/2

then ii) implies that I = -» while

1 1
InE{E(Q, reees9,) | e, € H, !n? A 613' [ et <=, Pp=Pp =3P ¢

R3 2
T_ =T = J'T}
n P 2

1 *
> Inf{E' (0, «.o09,] | 0, € H, f 39195 = 8440 f 3 PT <}
’ R R

where

2 3t
n 0 2. 1 8 1 8 2
' = — - ——— — - — - -
E'[0,,00009,] fn’ e T - g P g e PR+ (- DT+
t
13
TR

Hence, by part i) of Theorem IV.1, the restricted infimum is finite as soon as
. (a+y) > (B+§)/2. .

Proof of Theorem IV.4: We begin by proving part i). We first observe that we have

denoting by Y' = YAS

e, -8 1 2 _ 8 2 2
’! 2T "3 Pyt °p'p) * e 1701 16 “vpn' * |v°p| )2

a a=-8 ' §-* 2 2
P — L - — v +|v -
4 (pnrp * Oan) * 4 (pnTn * pp‘p) * 8 (vpn'va) 16 (l pnl l pp| )

2 2
But IVDnI < 4 LI |Vpp| <4 Dpr, and

I(Vpn.Vop)l < 2p.T, + o T, I(Von,vop)l < 2p Ty +eTy)

s & v & 8

-26=
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80 the above quantity is bounded from below by

ary'-8-¢ a Y
. (e T+ PTp) * Pt * PpTa) 7 3 |(Von,Vpp)| > v opt F
where v is a positive constant. And this yields éf' <
2 2 Oy )
h 2 e 1 2
B0 ,e00,9,) 2 fna 5 T+ Vet - Coldx - 5 g f3 ey op(x,y) dxdy

R xR

for some C > 0 (depending only on tge xo). Next, we remark that pp(x,y)2 < pp(x)op(y)

and thus by standard convolution inequalities

2

e ] ! 1 2 2 7/2 172

> —r p_{(x,y) axdy < Clp_1 < cipl Ipl

27 3 Tyl %p P 8/5 (%) vty e

R xR
cctf 41 lo 1% /8
M 1
R i
and by Sobolev inequalities

1
)

<c(Zf

V.
|ve,|%ax)2 = c(f , T ax)
R3 i R3

where C denotes various constants R3 depending only on e and A. Therefore, one gets

n’ 2 V.
E[o1,...,whl > o / 4 T ax + v [ N ptdx - C | 3 P ax - c(f 3T axy’2
R R R R
It just remains to bound conveniently f 3 ozdx- In the computations that follow C - -5
R

denotes various constants depending only on A:

f pzdx <C Z f |¢,|4dx
R i RO
2...4/5 1 K
< C(E f 3|wi| ax) / (z f 3|wi|12dx) /5 . )
i R i R oA
:_'I_]

[y

s

by HSlder inequalities, and since f 3|vi|2dx = 1 for all i
R
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)

<o, p8ax) 1/
R

/5

<ctf ,19%]%ax)>® by sobolev inequalities
R

<ctf , et a0’ |
R

This allows us to conclude the proof of part 1i).
The proof of part iii) is the same as the proof of Theorem IV.1 and thus we will skip
it. To prove part ii) we have to build appropriate test functions. By simple
considerations it is enough to treat the case N=Z=1 g0 denoting by ¢ = LI v, wve
have L= 92. op = 02 since we will take real-valued ¢, V. We construct spherically
symmetric functions ™, v as follows. Let ty; > 1 Dbe such that §§£ - u]tg > %31 let
60 >0, ry > 0: 60, rq will have to be determined later on and we assume at least
60 < 1/4, rg < 1. We are going to build first o®, v™ in the ball B(O,ro): v®  will take
ZQQ.

values in the interval [t°-6°,t0] and Qm = (2t§ - (wm) We next compute on the ball

B(O,ro)

2
2° m_ «a B m m_m [ m, 2 m, 2
="+ - G T + {E |vo™| - AL |Vpp| ) <

2m 4 nn pp
2
<A 2 e B - B (M2 s ™)

where F(t) = (Zt% - tzﬂﬁ . Now for §, small enough |P'| takes values as close to 1
as we wish while (vm)z, (wm)2 take values arbitrarily close to tg. Therefore fixing
60 > 0 small enough the quantity between brackets is bounded by =-v with v > 0. Since
we will extend o™, V™ outside B(O,to) in such a way that o™, ¥™ and their first
derivatives are bounded by fixed constants (depending only on ty) and have compact
support say in B(0,1) we deduce

Ele™, 0™ < -v [ |v6®|%ax + ¢ .

B(O,ro)

3
4Wro

Now, we choose t; by imposing {t: + F(to-Go)z) < 1/8, and we define V™ as

=28~
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{ follows on B{0,rq)

m Yo 1 To 1
- —— == = P — —
; Vix) =ty - 8 if Ix| < 3 mr =ty Af I x T * 32
4
* b 4 r r
0 0 1 0,1
- - - —— — - —— § — -_,
t, - §/2 + 6°n(|x| 7) it 3 ] x] 7 * o

It is of course easy to extend oO, v™ outside B(0,r;) as we claimed above and we can

even do so imposing

Rt A ab S o 4

[ gte™%ax =1, [ 9™ %ax = 1, [ o™Pax = 0
R R R

(this is where we use the restriction on ro). Computing

r x
m2 2 2 4x 0 1.3 0 1.3
IB(O,IO)|W Iax = §pa” = UG-+ 3207 = (g =371 5+
we prove that E[$®, V™ 2 - .

Remarks: 1) Let us observe that even if we restrict in ii) the infimum to spherically
symmetric functions, the infimum is -~=,

ii) The idea of the above tedious constructions is to choose at least locally near 0

p =92+ 42 congtant, |V0|2 ~ |VW|2. 92 ~ ¢2. thus cancelling the YlVolz term while
making the other terms a pT = ﬂ(onfn + DPTP) - % (|V9n|2 + lep|2) approximately equal to
(a - ‘g‘ - 'g')DT-

We would like to conclude this section by emphasizing Remark ii) following Theorem

IV.4: we showed there that if W = Z, for the above class of problems, it is a priori not

correct in general to restrict the infimum to configurations such that rn = rp = % T,

Dn = Dp = % P. 1In fact, we gave an example of a dramatic symmetry breaking in the isospin
variable (between n and p 1i.e. between neutrons and protons). Of course, this
phenomenon is by no means restricted to Skyrme's interactions but will be present for

general interactions (at least for some range of parameters). 1A precise study of this

phenomenon (maybe on simple model problems) certainly remains to be made, investigating in

particular the possible bifurcations corresponding to it. From the view point of physics,

F-
E
.
;.
!
(

this symmetry breaking does not seem to have been observed for nuclei such that N = Z in

e
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particular because realistic computations take into account the Coulomb force between
protons (and thus the symmetry is not really satisfied). However, it would be interesting

to look for related effects such as metastable states or local minima.
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V. Other interactions

We have considered in the preceding sections the case of the Skyrme's interaction
which basically corresponds to the choice (5) (in fact the difference bstween neutrons and
protons wave functions .21 in the preceding section comes from the fact that ave
functions should depend on the so—called isospin variable which takes fixed diffarent
values for neutrons or protons and that the Hamiltonian acts also on this isospin
variable). It is easy to understand that (5) is a very simplistic model of nuclear
interactions which, even if they have a short range, 4o not have "zero-range”. However
this model is often used becauge it already gives reasonably good numerical results and the
HF equations being completely local are somewhat easier to compute. Nevertheless the
theories allowing to derive the effective interaction V from first principle reveal that
one has to congider more sophisticated parametrization (i.e. different V...). rurthc;;ore
several extensions of the HF theory (as for exampls time dependent Hartree-Fock problems,
Hartree-Fock-Bogolyubov theory...) make necessary the use of more realistic interactions
V. On all these basic issues, we refer to J. Negele [43].

In this section we are mainly interested in the case when V is given by (3) even if
it is quite clear that most of the arguments we present below are still valid for much more
general V (including (4) as another example). We will not bother to indicate precisely
what are the mathematical assumptions we need: it is an easy exercise to figure out in
which 1P + 13 class (for instance) one has to take V and we leave it to the reader.

Again to explain the difficulties encountered, we begin with the scalar case which
more or less corresponds to the case of the alpha particle. For V given by (3), we
introduce the functional
w!4+2/3

ax +':' 11 Ve 2tavixey) ol *(yraxay

»? 2
(33 Elo] = — f 3|Vol ax + £ f 3|
R R 3 .3
ROxR

where ty > 0. Observe that we also changed the type of nonlinear terms. And we want to
study the following minimization problem

(34) I = me{Elo)/o ¢ B (2, [ R |o|2ax = 1}
R

that we embed in the £nllowing family of problems

-31-
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(35) 1, = mne{Elel/e ¢ 1 (&), [ ,|o]|%ax = 2}
R
where ) is a positive parameter. In fact solving (35) for some ) > 0 amounts to solve
2
(34) for different values of -%; ty, @, B as it is easily seen by a scaling argument. We

begin by a simple observation

Propogition V.1: i) For all R < =, there exists CR¢*™ such that Il¢l < Cr if

)

2
¢ e i\ (®%), Elo] <R, [ 3|v| ax < R.
R
1i) One has always I, < 0. If a, 8B >0, I, =0 for all A > 0 and there is no minimum

of (35).

iii) There exists Ao € (0,+] such that I, =0 for A< Ao, I, < 0 for A > AO'

a 8

iv) If 5 + ——
u“/z VN/2

< 0, then Xo < =,

Proof: Part i) is easy and we gkip it. If a, B > 0, E{¢o] > 0 for all ¢ ¥ 0 and thus

admitting I, < 0 the remainder of ii) is clear. To prove that I, < 0, we consider

¢ € XR) such that [ 3|vlzdx = A and we denote by ¢_(x) = v(%)a-3/2. Computing
R

Elp,] we find

2
1 N 2 1 4+2/3
Elp ) = — {_f IVQI dx} + — {t f |,| ax} +
[} 02 2m R? 04 0 R3

[ 1o]2(x) v(otx=y)) e} 2(y)axay

1
+ 7 ,
R

33 x
hence E{¢;] + 0 as o + =,

To prove iii), one first remarks that I, is nonincreasing since by the
concentration-compactness argument one has always
(36) I, < IY + IX-Y for all Yy € (0,)\)
and Iney < 0. Therefore one just has to prove that I, = 0 for ) small enough. Indeed

it 9 en ), [ 3|ol2dx = A
R

IS 1ol 2ovixey) o] 2naxay] < te1®, | 1er?, v

3.3 by  2mmh

3/2,.3
B3R 1Y% %)

<cr [ v %ax
R
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so for ) small enough E[¢] > 0 and iii) is proved.

The proof of iv) relies on the following choice of ¢: take ¢ € 0(33) and set

~3/4

;a(x) =g ot%). Then computing ![;a] we find

2
~ -1/2.n 2 -1/2 4+2/3
Ele ) = © / G f‘?IVol ax} + o~/ {t, fnslwl /3ax} +
3 11 1ePmleln (e*viotx=y))laxay .
Oxp’

Remark that o3V(ox) + (—%75 + —%75)HN/2
u u

easlily letting 0 go to +=, .

Go(x) in p'(®®) as ¢ + @ and we conclude

We next give a result concerning the solution of (35)
Theorem V.2: i) Every minimizing sequence of (35) is relatively compact in H‘(l}) up to
a translation if and only if the following condition holds
(37) I, < IY + Iy o for all y € (0,)) .
In particular if (37) holds there exists a minimum of (35).
ii) 1f a,B8 < 0 and if the following condition holds

(38) I, <1 for all Y € (0,})

ye
then there exists a minimum of (35) which is spherically symmetric, nonnegative, smooth and
decreasing with respect to lxl.

Remarks: i) Very little is known on the values of A (or equivalently a, B, to,%%é...)

for which (37) or (38) holds. We only got very partial results on this important question.

ii) 1f for some Ao > 0, (38) holds and (37) does not hold then there exists a minimum of
(35) while some minimizing sequences are not relatively compact even up to a translation.
If this were to happen this would be an extremely interesting situation.

Proof of Theorem V.2: Part i) is proved by a direct application of the concentration-

compactness arguments (33]. To prove part ii) we first observe that by a somewhat standard
symmetrization argument (as in E. H. Lieb (28], H. Berestycki and P. L. Lions [5]) one sees
that I, agrees with the infimum of E(p) for ¢ ¢ H‘(l3), ® spherically symmetric,

nonincreasing with respect to |x|, nonnegative and f 3|o|2dx = A. Therefore, it is
R
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enough to prove that if (38) holds then there exists a minimum of

1¥ = Inf{E{e) /9 ¢ aY(®R3), ¢ is spherically symmetric, [ 3|9|zdx = 1}, the other
R

properties of the minimum following easily. Now to solve I; we may either apply the
concentration-compactness arguments in presence of symmetries (see [34)) and conclude

observing that since I, vanishes for ) small then 1limn IX/n =0 for all A > 0 and
n

(A=y)/n’
line of arguments showing first (as in (28], (46], (5]) that there exists a minimum ¢, of

thus (38) is equivalent to I; - IA < I: + limn1 Or, we may use a more standard
n
Inf{E(e) / » ¢ H'(R}), ¢ is spherically symmetric, | 3|olzdx < A} and concluding that
R
/ 3|oo|2dx = A since (38) holds.
R
Before going into the general case, we study problems like (35) with h = 0 in which

case (35) reduces to

= It [ 3|v|“2/3dx +7} [ 1 lol2tx)vix-y) o] 2(y) axay
R

R?st

(39) I

o e L2y N 13, [ |e)%ax =)

14

(in fact the value 3

plays no role in the analysis below, for example everything below

remains true if we replace l%. by any p > 4). We still denote by E[p] the functional

that we wish to minimize. We can prove the

Theorem V.3: 1) If for any p € L‘(la), p » 0 we have

(40) [ ] p(x)V(x-y)ply)dxdy > 0
ROxe’
then I, =0 for all X > 0 and there is no minimum of (39). On the other hand, if (40)

does not hold for some p € L‘(l?), 0 >0 then I, <0 for all X > 0. This is the case

if, for example, a+B < 0 or —%75 + -%73 < 0. 1In all that follows we agsume that I < 0
u u

for all X > 0.

il) Every minimizing sequence of (39) is bounded in L2(r?) n L14/3(l3).

1ii) Every minimizing sequence of (39) is relatively compact in 2(r¥) n L14/3(l;) up to
a translation if and only if (37) holds. In particular if (37) holds there is a minimum of
(39).

iv) The condition (37) holds if A is small enough.
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v) If o and $ are negative, (37) holds for all A > 0 and there is a minimum of (39)
which is spherically symmetric, nonnegative, nonincreasing with respect to |x| and with
compact support.

Remarks: 1) If we assume that (37) holds at A > 0 then we can prove that either (37)
holds in a neighborhood of A or there exists a minimum of (39) - that we denote by 90 =
such that ¢q ¢ 2@ N3 (@) ana

(41 E'(eg) = 0 i.e. %‘o o;’” - po(og-v) a.e. in B

(we may always assume that ? is real-valued, nonnegative).

Indeed, if for any minimum of (39), (41) does not hold then, assuming that we have
built a gequence Y, X A such that (37) holds for IYn and denoting by ¢, the
associated minima, on one hand ¢, converges (up to subsequences in L14/3(.3) n LZ(.B)
to some minimum ¢, of Iy and on the other hand there exist On satisfying
(42) B‘(wn) + Snvn = 0 a.e. in la, 0 <V« en <cC
for some positive constants Vv, C.

Now we argue by contradiction: if (37) does not hold for Ixn where An ; A, then
there exist Y, ?» A /2 such that

I, =1 +1I
n Yn An Yn

. 0 ¢ vn < An

and since (37) holds for I, we have that Y 2 A. Next, if (37) does not hold for IY B
n

there would exist Gn € [Yn/z'Yn) such that IY = 16 + IY -5 In particular we have
n n n n
=1, +1I, 6 _ + 1, _
n Yn 5n Yn *n xn Tn

I = I +1I .
An Yn by

But we always have

s *y >has ¢+ Ig * s 2%
n n n n nn n nn n
80 the above equality yields
I, =X +I, 5 o« I, 5 = IY %t “w
n n n n n n n n n'n

Since (37) holds for I,, the first equality implies that Gn + A, But then the second
n

equality gives a contradiction since (37) holds for A small enough. Therefore (37) holds

for I, .
Yn

To conclude we argue as in [34]: observe that
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(( “)1/2 ] {(A
I, +1 =« I, < E[(=—) e | ~Ele] +
Y xl’l-‘Yﬂ An Yn nt = n

1
n)/z_ RN
n n

_Y— 1}!' (’n)'vn

< IY - K(Xn-Yn)
n
for some K > 0 (the almost equal sign can be easily justified and the above inequality
holds rigorously). On the other hand, we prove below that ka'z converges to a negative
constant as A goes to 0. Hence we get
2
k(A -v)) € COA =y )
and the contradiction proves our claim. .
2) We would like to remark also that, if we do not assume that a and B are negative,

the question of the spherical symmetry of the minimum of (39) (when it exists, as for

example when X is small) is open.
3) Let us finally point out that somewhat related problems are considered in J. F. G.
Auchmuty and R. Beals [1]), [2], P. L. Lions [36), [33].

Proof of Tueorem V.3: The proofs of i) and ii) are standard: the sign question being a

consequence of the difference of homogeneity of the two terms in E, and the negativity

N/2 + Bv-N/z < 0 being proved as in Proposition V.1. Part iii) is proved

of I, when ap”
by a simple application of the concentration-compactness method.
We now prove part iv). We first show that

(43) xxx"z R xnf{% [ ] lel2avix-y) [o|2yraxay / ¢ € L2, [ 3|o|2dx =1} .
R
ROxR

Observe by the way that the infimum in I is achieved by a simple application of the
concentration-compactness principle. To prove (43) it is enough to remark that on one hand
1, > 2> T while on the other choosing o, € D(R®) such that

Taee) =3 [ [ lo 20vixyle |Pyraxay < T+ 1
R

anda [ 3|wn|2dx = 1, we obtain

2+1/3

2 - 1
IA‘E[K’n]‘Cn‘ +AT e o
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Next, let us argue by contradiction to prove part iv): assume there exist An *a

n
and Y, € (0,1,) such that
(44) I, =1I_ +1I .
An Yn xn n
This yields
I I I
xl‘\ - Yn (Y_n_)z + xl'l Yn ()‘n Yn)z
x2 2 ‘2 X -y A !
Y n n n
n n y
and this combined with (43) implies that up to subsequences TE converges either to 1 or
n

to 0. Replacing if necessary Y by A_-Y we may always assume that Y _/A converges
n n'n n’"n

to 1. Next, we fix n and we take a minimizing sequaence ¢, for I, . We remark that

Yn
[(An)‘/z {(An)2+1/3 (An)z }
I < lim Bl (—) ¢ ) = lim {{— E.leo.] + (—) E_ (0. ]
Xn k Yn x k Yn 1k Yn 27k

|4+2/3

where we denote by E,[e¢] = t, f 3|Q dx. On the other hand E,; [g,] + Eyle,]) ; I,
3 n

go we obtain

(An)2+1/3 { ((xn)z (An)2+1/3
I, € (= I_. + lim {(E (e J{{—) = (o
Mo Ta T % 2K, Tn

L4

A2 A2 A 3
cx, o (D) - n, v ua{ln mt @ (-0

Recalling (44) we deduce {inally

(G2 - r, + G210+ 2" L) i € )
1, . < () -1, + (s 1+ _ - 1} Lim (1, -E, (e, ]) .
An Yn Yn Yn Yn Yn k Yn 27k

Of course 1lim (1Y -Ez(ok)} depends on Y, and similar arguments to those used to prove
k n

(43) show that

-2
1im [1Y Ele )l Y " 20 .
X n
1 1
A!\-Yl'\ - )‘n =Y xl -Yn
(Xn-Yn)Yn

Next since = ; 0 dividing the above inequality by (Xn-Yn)yn we

n_
2
(Xn-Yn) n

obtain passing to the limit: @ € 2I, contradicting the negativity of I. and the

=37~
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contradiction proves iv).

We now conclude the proof of Theorem V.3 by proving part v). The proof involves
several steps: 1) we show the existence of a spherically symmetric, nonincreasing minimum
of (37), 2) that such minima have compact support. It is easy to conclude that (37) holds
by observing that if 9., ®, are the respective minima of Iy, IK‘Y for some Y € (0,))
and if say ¢4, ¢, are supported in a ball of radius R then considering

P(X) = 9,(x) + 9,(x + 2Re)

where e is any unit vector, we obtain

~ 2
[ 0912%ax = [ le,|%ax + [ e |%ax = »
23 2 22

(5] = Elo,] + Eloy) +3 [ [ o, (x)V(x-y)e,(y+2Re)dxdy

R XR3

(37) is proved. (Observe that P9, 92 2 0 and Vv < 0.)
To prove 1) we argue as in the proof of Theorem V.2 introducing the problem in

p = |o|2
I, = Infle, f 3|o|7/3dx +i— I [ etx)Vix-y)p(y)axdy /
R n’xn3
: . 1,93 7/3 93
p spherically symmetric, p € L (R°) NL (R°), p»0 a.e., f 3pdx € A}. Then this
R
problem is solved exactly as in P. L. Lions [36] wusing the spherical symmetry and the

smoothing properties of the kernel V(x-y) and there exists a minimum Pg which is
nonincreasing (using again symmetrization argumentsg). If we prove that f 3 podx = A then
Step 1) is completed considering ¢0 = Do. In order to do so we argue bynEonttadiction
and we assume that f 3 podx < A. Then the necessary conditions for minimality may be

R

written as

1, 43

1
3% P *

2(po'v) =0 a.e. on the set {po > 0}

71, o4/3

1
3t Po * 3%Py*V) > 0 a.e. on the set {p, =0} .

Py 1is spherically symmetric, nonincreasing with respect to |x| so the set {po > 0}
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is a ball (up to zero measure sets) possibly 7 itself. If this ball is not l?, on its
complement the above conditions yield py*V » 0 and this is absurd since p, > 0,p45= 0
and V < 0 in R’. Therefore {pg > 0} = R and

2 2
14 . 4/3 - -4 | x-y| -v|x-y|
T toP X In3 pyly){lale + |8le }ay

2 2
> U}y pepa oo Qb R TY Rl L e (P PR

since p, is radial nonincreasing. A simple computation shows that the above integral is
bounded away from 0 as |x| + * and we obtain a contradiction since pgy+ 0 as
[x] + =, pgtx) >0 on R3. Hence, step 1) is proved.

The proof of step 2) uses similar arguments: indeed let ¢, be the above minimum

(wo = Jpo, ®p satisfies for some Lagrange multiplier 6 > O
14 11/3

3
3 % %

+ vo(v:'V) + 600 =0 a.e. in R .
If 9o does not have compact support, since ¢, is radial nonincreasing we deduce that
?9(x) > 0 on ® 99+ 0 as |x| o,
Dividing the above equality by 9, and letting |x| got to = we obtain 6 = 0. Then,
Py = o% satisfies the same properties as in the proof of step 1) and we reach a
contradiction thus proving our claim. o
We now conclude this section by considering the general case of functionals like (33)

for less simplistic nucleii: we introduce the following functional (which except for the

distinction between neutrons and protons basically corresponds to the potential V given

by (3))
n? 1
(45) B0, 00000, ] == f ,tax+z [ (0 [ [0V (x-yo(y)dxdy +
Y 1=1,2 © 3.3
- H, [/ o (X)V, (x=y)p (y)dxdy - H I op(x)vi(x-y)pp(y)dxdy} +
RJ*RB R3XR3
2
--41- PR ffvi(x-y)lp(x.y)lzdxdy -8, [ [ v (x=y)]p (x,y)] “axdy +
1=1,2 7 3.3 wxr?

=39~
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2 [] 1 -

B, £ / vi(xry)lpp(x.y)l dxdy} + 3 £ I,T;:;T Pp (X190, (¥)
xR ROxR

- 2 7/3
lpp(x,y)l laxdy + t In’ p'Pax .

where W;, H;,, M;, B; (i=1,2) are given constants (which in practice are not independent -
roughly speaking W =8, H = -Hi) and Vl(i-1,2) are given by: Vi(x) = cxp(-'x‘zlui),
and uq, ¥y O 0 are two given constants. Of course, we are using the same notations

concerning p, Ppe P T as in the functional (28) for Skyrme's interaction (section 1IV).

pl
The HF minimization problem is then

1 L 2
(46) I = Inf{![v1,...,9A] / 9, € H (l?), ) 3 'i'jdx - sij
R

for 1< i, J <N and for N+1 < i, j < A}.

We will not state a result on this problem because exactly the same result as in part
iii) of Theorem IV.4 holds here (and the remarks following Theorem IV.1 or Theorem 1V.4
also hold here). Of course since V; € L'(l?) for i = 1,2 the infimum and minimizing
sequences are automatically bounded and contrarily to Theorem IV.4 no restrictions on the

coefficients need to be made prior to the analysis of minimizing sequences.
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Vi. Spin~orbit forces

Up to now we have constantly ignored the spin dependence of the various wave

Y T
-
o

JB:

functions. However, if this omission greatly simplifies the presentation and (probably)

AN
i
l- - \ N
the mathematics £ the HF minimization problems, for practical and realistic computations ;;f ~
h.':u-':.
one hag to cope with the spin dependence and jits consequences: the spin-orbit force. It H:a

L4

E

is our goal here to try to explain the form of the spin-orbit force and to show that in

order to have a bounded infimum some precautions have to be taken (and this does not seem ’;‘!_&!E'
A
S

to have been always the rase in the Physics literature on this matter). Let us also _m{%:
A

mention that in the remainirg sections of this paper, we will again slip the spin

dependence even if it can be restored without affecting the mathematical results (provided

4

s »
A
2
'

b
one considers spin-orbit forces with the appropriate restrictions described below).

.
e
-

o
LIRS

First, we explain how wave functions depend on spin and we will do so by only

]
a's & 4 4

explaining the computational rules. In everything we said in section II, one has to '%?EUL
understand now that &(xy,..¢,x,)}, 9;(x) in fact depend on other variables namely rard
LSAST
B(x,,0,5 %ys0,70001%,,0,), 9, (x,0) :.:-.::_‘-j
- ey
where the spin variables o; take only two values say +1 and =1. If we denote by x, = };};{1
-\.n\..\‘

Fal

D
" m

{x;,0,)(1 € i € A), the Paull principle now states that the antisymmetry condition (2) has
to be understood now as a condition on permutations of the variables ;i(1<i<A). Then the
remainder of the derivation of HF problems goes through as before. It is possible to
consider now Qi(x,o) as a pair of complex-valued functions (spinor) that we will
indifferently denote by (¢;(1), 9;(-1)) or (0] ,93).

The orthogonality condition becomes (if no differences between neutrons and protons

are made)

* *
(47) fn3 9, (Mo (1) + 0, (~No (-Nax = 6§, , for 1< 1, J<A .

D A
s .

TS 8 A AT VAN IRV T, T R

The spin dependence affects the Hamiltonian H and the potential V in two ways: the
first one is through the so-~called spin-exchange operators (P;) which will basically mix
the various products of @5 The second one is more dramatic; it is the so-called spin-

orbit force which can be thought of as an additional two-body term.
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Typical models of the spin-orbit force are zero-range models comparable to the choice

(5) of potentials. This model leads to a functional i[v,,...,oll which in the case of

Skyrme's interaction (see section IV) is given by

2,4 |zdx +
p

4 8
!['1'...'951 - !(’11"‘I'A] + 7 f‘3|an|

(48)

w
0
+ 5 fns“"’"” +(V0,,3.) + (V.3 )ax

where E 1 given by (28), the parameter B already occurs in &, Wy is a positive

parameter, J is the so-called spin density that we describe below and J, Jp are the

spin-densities for the neutrons and protons and are built in the same way as J

restricting the various sums to the neutrons or protons wave functions L2 {as we aid

i\

for op. pp...). Let us also mention that the densities T, ¢ now mean of course
A A
+ 2 -2 +,2 -2
t= J 019"+ Ve, |, 0= T (e 0%+ Te ] .
i i i i
i=1 im1
We now describe J: J is a function 'y taking values in = which may be written

as (see [48])

(49) Jx) = (-1) ] 9;(x,a) [9,(x,0") x <o||a*>]
3,00

where O is the Pauli spin matrix. The above bracket means that <o|&|c'> 4s a point

3

of R o

y' 'z

) or

whose coordinates are the results of the action of the 2x2 matrices Oyr ©

described below on (0,0') where the spin variables o, 0' take values now in (;
0

o) with the conventions "+ = (;)', "o = (1)". The matrices o, dy. 0, are given by

G

0 1
(s0) e T A I LI PR S

For example if O = o' = (;) then
0 11
<alo lo*> = (1 0y o) =0
- 0 dyely
<ofo for> = (1 0)(y )(g) =0

<ofo_lo*> = (1 0)(; _2)(;) =1

42~
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0
and the point <0|3[d'> is the point (0).
1

In general the above quantity J is not real and at this point we need to explain an
important assumption in Hartree-Fock theoxy in Nuclear Physics. When including spin
dependence and spin-orbit forces (as one sh;uld), one has to work in the case of even-even
nucleii i.e. one asaumes that N, Z and so A are even. Futhermore one assumes that the
subspace of occupied single-particle states is invariant under time reversal and this means
mathematically that for all 3 (3 e {1,...,N} or 3 € {N+1,...,A}) there exiats 3' ()’ ¢
{1,...,8} or 3' € {N+1,...,A}) such that
(51) Qj.(x,c) - =g v;(x,-o) for all x ¢ R?, o=+ 1
i.e. o;. - -o;., o;. - 9;'.

It is possible to uge this assumption by dividing by two the number of unknowns
(N, 2, A become N/2, 2/2, A/2) and we still denote by N, Z, A those reduced numbers):

then the HF minimization problem and the functional remain the same and one may compute the

three components J,, Jy, J, of J. A tedious computation yields
(52) =1
* [ 4
+ Re(vi(1)Vzvi(-1)) - R‘(°1('1)vz'i(1))}
? Y * 1
I - 1.2.1(-1‘“'1“) L)+ Imle =1V 8 (-1)) +
(53)

L ] w
+ Im(oi(1)Vzvi(-i)) + I“"i(")vz°1"’))

. A * *
I - ) {Im(vi(1)Vyvi(1)) - Im(vi(-1)Vyoi(-1)) +
r
]
]
|
| “q3=-

AR SR
y ‘."'..“. S :. -‘.‘4‘_'-}
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A
L L ]
3 = ] (-Re(9, (1)V 9 (=1)) + Rale,(-1)7 9 (1))

z
(54) =1

L 3 *
- I-(¢1(1)VY01(-1)) - I-(vi(-ﬂvyvi(l))} .

AT V" X L TRy

We will only investigate here the difficulties concerning the boundedness of

minimizing sequences and the finiteness of the infimum, coming from the addition of the two

spin-orbit terms in the functional E given by (48). Of course, we are interested in

e O v T

~ 1
1= Inf{z[91,...,QA] | 9, € H (I?), [ prax < =,

R3

(55) .

1/, Qi(x,a)Q;(x,o)dx =8, for 161, JN and for Nei<i, 3<A)
g R

Once these equations are solved positively, then the analysis of (55) goes along the same

l"
L N
O

lines than in the preceding sections (and raises even more open problems). :35-}
"'z-'..
The considerations we give below show that I 1is finite in the case of the Skyrme's el

interaction if W, is small enough (and a, B, §, Y satisfy the conditions of i) in
Theorem IV.4), while for other interactions having finite ranges (but no zero) I is never
finite. The conclusion is that the spin-orbit force cannot be taken as a zero-range two-

body interaction and one has to use instead spin-orbit force term like

P AP AP AN A

-(r,—rz)z/u2 N >
e [(r1-r2) x (31 - Vz) . (a1 + 02)]. We will not try to explain to non-expert

readers what this terms means; let us just mention that it leads to HF minimization
problems involving terms like the ones we are analyzing except that these terms are
nonlocal and so present no more singularities nor unbounded features.

By inspecting the proof of parts i), 1ii) of Theorem 1IV.4, one checks easily that part

11) still holds for E and thus we will assume that a, 8, §, Y satisfy the conditions of

part i) of Theorem IV.4. Therefore we find that if (.1:0-.,QA) are in the minimizing set




~ B 2 2
Elo,,cee09,] 2V !‘3 T4PT AKX -C+ 3 I‘3|Jn| + |Jp| ax

W
0
+3 f‘S(Vp.J) + (Vo 43,) + (Vo3 )ax

for some constants Vv, C > 0. If follows easily that if W, is small (w% < 8vB), I |is

finite and if i['1"""nl < R then f 3 THPT dx € Cp for some positive constant Cp.
3

Now, we are going to show by an example that I 1is no more finite (i.e. I = -=) if

we consider more realistic interactions such as the ones considered in section V. To be

more specific, we consider the functional
(56) Elo,,00009,] = B9 ,00000,] + 5 fna(Vp,J) + (% 3) + (Vp_, 3 )ax

where E 1is given by (45). We claim that this functional is not bounded from below on the

*
minimizing set {9, ¢ ), I [ 3 injdx = 611, 164, <N, N+1 < 4, J < A}. In fact,
g R
we believe that related examples show that even in the case when E is given by (48)

I = -» {f W is not small enough. To prove our claim, we begin by a simple scaling
0

argument where A > 0 is the scaling parameter, (’1"""A) is any test function in the

minimizing set

~ - . - L] 2
E(A 3/201(T),...,A 3/2'5(7)] = -:—2- Z—EI 3T ax] + Cy +
R

2 t
1e 1 - 2 0 /3
*73 I =il {pp(x)pp(y) IDp(x,y)l }axdy + ry f 30 Tax +
3 .3 A
R XR
1 Y
+ ;E T [n?(Vp,J) + (Y 30 + (Vpp,Jp)dx

where C, is a bounded constant (depending on 91,0--,OA)~ The example below shows that
the last term may be negative and thus our claim is proved sending 2 to 0. As in the
proof of Theorem IV.4 it is enough to build ¢4,...,9, near 0 and we will actually build

9400049, 80 that 1, p, P9 (for q < 9), |Vp|2 are integrable near 0 while p{div J)

has constant sign and is not integrable at 0. Then it is easy to approximate and obtain

values which go to =®=. Our choice of Pqreee Py is the following: for { » 3 take ?y

e .

S
e
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e
A,
S
- tobe 0 near 0, for 41 € 2 ctake 9; tobe 0 near 0 and 9; real near 0. Denote -\E-"
-,
by 9 = 93, 97 = ¥, + 1V, where ¢, ¥,, ¥, are real. We find that LY
) %o
=] Y, 0ax = - = [ _ p dlv J dx
2 .3 2 .3

L 4
and nearby 0, div J reduces to 2 Im(?}— [} -5%- 0). Observe also that the term in
1 2

p div J given by

2 2 3 3 ] 3
[ 00 ¥ G ¥y e ¥y = s ¥y e $ylex =0
R 2 1 1 2 1)
t').\.'r
Hence, we only have to look at Y = 02(-—3— ¥ & b, - = ¥ = Y,) near 0. We next “F""'
’ M, "18x, "2 ¥, 2 3x, 1 E.‘}.-
h"
choose o¢{(x) = |x|“ near 0 for some & < 0 to be determined later on, and we take \_.p'{::
)
Ve(x) = Z(x) cos 8(x), ¥y(x) = Z(x) sin 8(x). So ¥(x) = |x2]| %z (x)

2 2 3 3 2 2, .28/2 /2
[—'ax1 z —3x2 ] —3x1 0 i, ). We finally choose Z(x) = (x7 + bx3 + x5)°/%, 8(x) = [x| .\F':*:"
with b > 0, b# 1 and the exponents B8, y will be determined later on. With these '::'\-
choices ¥ 4is given by Y = Bvrassx.‘xz(l-b)ss'zty'z where g = (xf + bxg + x§)1/2. :-

b aiad
Therefore ¥ is not integrable at 0 if 2a + 28 + y € =1; while 1, p, p9 (for q > 1), -2
._-J."-~
|[¥0]2 are integrable 1f a > -1/4, B > =1/4, a > =3/(2q), B > =3/(2q), B+y > =1/2. Then o
1 1
if q < 9, choose a, B8 < -% near - %, Yy < - 3 near - 3 then all the above S
roe)
conditions are satisfied. p,.'
We would iike to conclude this section by inspecting the size of the spin orbit term ' ~_ -
W s
?g'f 3 Vp . J dx in the case of a spherically symmetric configuration (the precise wmeaning :’_-:;'_
R Vi
of that choice will be given in gection VIII). Following Vautherin and Brink [48] we gee ’ %‘:
3
ol
that L8

O

X - - 1 3..2
I = mJ([xl), T — ) (23 #1 {3 (3 +1) = L (L +1) - IR x|

4nrr” a

LR

’

1

4wr2 a

and the sum over G means the so-calied sum over occupied states (the set of levels

"I'.I;“ -

.u,a

while p(x) =

5‘ (2ju+1)R:(|x|), where &, is some positive integer, ju - "a + 1/2

compatible with the numbers of nucieons - see section VIII). Hence, the spin orbit term
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;2 [ 9.3 ax = wy ol a3enmry - Lk} o L=
x a L'

. - - 352
{g (23411 (3403 4+1) = Lg(Lgt1) 4]‘a}°’

If we choose only one occupied state a (t-;hl.s may always be achieved by taking various

Ry with distinct supports in (0,%)) with 3, = L, + % s we deduce

w u
0 0 2, (=3 1.4, 1
3 In’ p.J dx = <= (2341 L Io“a‘& - TR, 3 ar

\J
0 2 1 » 41
== e g fo R, X ar) .

And the above scaling argument shows that even in the context of spherically symmetric
configurations, the spin-orbit term is "too unbounded”. 1In fact, the above computation
also shows that even for Skyrme's interaction conditions on W% (compared to the other

constants £,a...) have to be imposed in order to have a meaningful HF minimization

problenm.
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VII. A-body problems in Nuclear Physics and Thomas-Fermi approximations

In this section, we first make a few comments on the translation-invariant A-body
problems of the form (1) and on the minimization problem (8). Then we investigate the role
of the density-dependent term in the Hamiltonians H which are being used in practice in
Wuclear Physics. Finally, we conclude this section by discussion the validity of HF
approximation and we briefly discuss the Thomas-Fermi approximation.

We begin with problem (8) where H is given by (1). 1In the remarks which follow we
will not bother given precise assumptions on V which guarantee an eas. justification of
the arguments below (again it is an easy exercise that we leave to the reader). We first
observe that (8) has never a minimum: indeed, let & ¢ H with IRBA|°|2dx =1 we

congider for X > 0

1 -, 1= =, 1=
(57) OA(x1,...,xA)-rJTO(x‘-xi‘Ax,...,xn-x'rxx)
- 1 A 2
where x iy ) x;. One checks easily that &, ¢ {{ and f 3Al.xl dx = 1, Next we
i=1 R

compute {(%,) = (H°X'°A)L2 and we obtain

“2

1 1 2
Eo) =B s mx gm0 [ gll 7ol
A R 1
Hence, if ¢ is a minimum of (8) the above equality implies 2 vio =0 and this is not
i

possible since ¢ ¢ Lz, ® 2 0.

The above equality also shows that the ground state energy E is also given by

2 2

A 2 a 2

E = mf{;;{ / 3n|vi¢»| dx - 2—-! 3A|Z v, el ax +
i R R i

(58)

2 1,38 2
+ ¥ [ vix,-x ) |8|%ax/® ey NnH (RT), [ . |#]%ax = 1} .
i<y R3A i7) R3A

And now the translation invariance does not imply anymore a priori that minima do not
exist. In fact to our knowledge no existence results of minima for A » 3 are known for
the above problem. Observe also that the above quadratic functional is invariant under the

transformation (% = ¢,) for A > 0.
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In fact, in practice it may be important to apply HF method to the above functional

I
’

E_‘?’

’
l...‘
L4

instead of (H$,#) and when we inject Slater determinants into the above functional we

4,

<

2
obtain the following quantity (which clearly replaces the term gﬁ-f 3rdx that we had in
R

the preceding sections)

A
4

.
-

2 2
a 1 a2 * 2
(59) - (1 = —=) I TAX + —— —~ z |I v’ ¢ dxl
2m A .? 2m A 1<3 .? i

and everything we did in the preceding sections is easily adapted to this new situation.
We now make two remarks for improving the Physics applications of HF wethods. First
of all, there is a slight difference of mass between neutrons and protons and this could be

2 A
incorporated in # and in everything we did before by replacing - ;&- Z Ax by

1,'2 N hz i=1 74
= 2 Ax i 2 Ax vwhere =n , o denote respectively the masses of neutrons
n i=1 i p isN+1 i

and protons.

The next remark concerns the density dependent terms: in the preceding sections (IIX
to VI) all HF functionals incorporated terms nonlinear with p homogenecus of a degree
different from 4 and obviously such terms cannot be obtained from through the method
presented in Section II. 1In fact, to improve the numerical computations obtained through
HF methods Nuclear physicists have added to the Hamiltonian H phenomenological terms of the
form

(60) ty 1 VO IV(xymx)
1<i<k

where V for example may be V = 60. Now if we use Slater determinants this term gives

some term like

ety [ I pavixy)oty)Viy-2)p(z) dxdyaz
. 13~l3K13
- 1 3
Q or & t3 f 3 pPrdx {if V = 50‘ Recalling that we are suppressing the spin dependence one
: R
! sees that such a term is equivalent on Slater determinants to a two-body density-dependent
F: interaction
3 x, +x
: hl i | -
E: {61) 3 % o( ) 8(x, =x,)
3 {all this is formal bscause the absence of spin does make matters a bit trivial). Roughly
i
. speaking the term (60) provides a simple phenomenological representation of many-body

T e e e e

T VEERY
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Ej effects and is supposed to describe the influence of all other nucleons to the interaction

- between two of them. It has also been observed that instead of p it is often better to

~ consider 92/3 (see H. Bethe [8]) which leads to the term f.? 92*2/3dx used in section

?: V. Of course a term like (61) makes problem (8) nonlinear and one may apply the

'f'{ concentration-compactness arguments to this full nonlinear A-body problem. We will not '

pursue this question here.

We now conclude this section by examining the validity of HF approximations to (8).
In {31], E. H. Lieb and B. Simon proved (at least for Coulombic systems) that the ground
state energy - given by (8) and its HF approximation Eﬁp given by (11) have similar

asymptotic behaviours as A go to +®. More precisely one has for general clasgses of V

A

A E
(62) £, B .
A773 0 973 e TE

where Egnp is the infimum of the so-called Thomas-Fermi approximation of (8)

e - Inf{%l ) 3 95/3dx + % f P (x)V(x=-y)p (y)dxdy/
R 3 3

R XR

(63)
p € L‘(l?) 8] L§/3(l?), p>0 a.e., f P dx = 1}
R

2
where Y is given by (61r2)2/3 gﬁ? These results were first proved by E. H. Lieb and
B. Simon [31) and the original proof was later simplified by B. Baumgartner (4],

E. H. Lieb [26), {27]: an inspection of the proof (confirmed to the second author by

E. H. Lieb) shows that the result holds for general V. In fact, in Nuclear Physics it

EA

is expected that C. < 0 (volume energy constant): this means that for

—_—
A Ad» 7O

realistic V Epp = 0. Furthermore, defining E%F by (63) where f 3 pdx = 1 is replaced
R

A A
e*, up’ Frr
by | 3 pdx = A, one would like to prove that —' el > Co. Oof course if
R

Eqp < 0, then one deduces from (62) that EA/E:F A Ve

Concerning the TF minimization problems (63), let us mention the references {36], {33]

where related problems are treated. Applying the method in [33), we find that if Vv |is

-50-
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given by (5) Ry, = 0 and there is no minimum while if V is given by (3) or (4) the
concentration-compactness argument applies. And it is shown in (33] that every minimizing
sequence is relatively compact up to a translation if and only if Epp < 0. In particular
if Epp € 0, there exists a minimum and if a, B < 0 then this minimum is spherically
symmetric, nonincreasing with respect to |x|. Finally, one checks easily that if o~ + 8

is small then En; = 0 while if a, B are negative and large Eqp < O

~
s
¥ *. 'i i
-,
ARLY
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VIII. Solutions with symmetries of Hartree-Fock squations

By

All the minimization problems we considered in the preceding sections are invariant

under othogonal transformations of R?: if R 4is an orthogonal matrix then denoting by ;.f'v
1 (}
01(°) = 9,(R*) for all i we check immediately that : 'ﬁ
~ ~ ' ’?n‘;
E[Q.‘t'OHQA] bl s['1l"’l'hl ,'::;.‘;
.t
for all the functionals we considered previously, while the orthogonality conditions (10) i
~ ~ e
still hold for (@,,...,9,). Al
1 A s
It is thus natural to look for solutions of the HF equations with certain invariance ?}}?A
properties by a subgroup of the group of orthogonal transforms of R}, For instance one ,]\’:

may look for solutions with spherical symmetry or cylindrical symmetry and in particular

one may study the same HF minimization problems with the additional constraint of

invariance by a chosen subgroup. But of course there are various ways to impose spherical

-
f

symmetry on (94,+.+,9,) (or cylindrical symmetry). One possibility is to impose that
L all 9y are spherically symmetrie i.e. 9 really depend only on |x|. However this is
not really satisfactory from the Physics view point since, even when solutions with such
symmetries exist (and this is not always the case in view of numerical experiments), in
general such a solution gives a value to the functional which is too high to yield any
information on problems like (8).
To explain the meaning of spherically symmetric solutions in Nuclear Physics we take

an example namely the case of the functional (28) and to simplify we assume that e = 0 so

we consider

2 t x
y n 0 0, 2 1.2 2
: IO N fng{iﬁ T g L+ 500% - (xy + )Mo+ 0)] 4
a 8 Y 2 8 2 2. . 5
—_ - —_— | - — v + |V + —— a o .
Pt T e Tt T e 190 1% = 35 ¢1ve,| [ opl )+ 3 oonop} x

Recall that we work with the following othogonality conditions f

Dl S A

L]
(65) f 3 9y0y0% = Gij for 1< 4i, < N and for N+41< i, J< A .
R
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Now if we assume there exists a critical point of E given by (64) with the constraints

(65) such that Pne pp, Tpe T are spherically symmetric then up to some unitary transform

p
of the form (29) the HF equations may be written as
a2 3
(66) - div ( Ve ) +V(r)e, =e9 on R
. i q i 171
an(r)

where €4,+..,8, are the Lagrangs multipliers, g =n if 1< { < N, gq=p |{if

N+41 € £ €A, ¢r = ‘xl and n;, n;, \ /) vp are spherically symmetric functions which are
easily computed from the expression of E (64). The quantities m; are often called
effective masses. It is well-known that ¢, being an eigenfunction of the elliptic
operator Lo given by {- div(;;gr:; v) + Vq] must be a product of a function # (r) by
a spherical harmonic 01 i.e. Anqoiqnnfunctlon of the Laplace-Beltrami operator (-AS) on

2 of 13. But then the orthogonality conditions (65) imply that if for some

the sphere 5§
1€ {1,...,N}) (for example) 9 = #;(r)9;(8) and -Agh; = E;p; then denoting by m the
multiplicity of the eigenvalue B; there exist (m-1) indices in {1,...,N} distinct
from i for which the associated ¥ 1is also an eigenfunction of -Ag with the
eigenvalue E;. 1In other words N (and 2) aplits into the gum of say k multiplicities
of eigenvalues of (-As) and the angular functions ¢, associated to ¢; span the
eigenspaces of these eigenvalues. In view of the increasing multiplicity of eigenvalues
of (-As) as they increase, it is easy to see that for given N and Z they are only a
finite number of choices for the angular dependences of the functions ¢;. This
decomposition is precisely the meaning of a spherically symmetric solution for HF
equations.

Of course, we could minimize E imposing (65) and the above formulation of spherical
symmetry but it is somewhat simpler (and better for the values if E we get this way a
priori) to consider instead

Is - Inf{![v’,...,vll / ’ € H‘(Rs) for 1< 1< A, (65) holds,

(67)

f 3ptdx e, pn'pp’Tn"p are spherically symmetric} .
r
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Observe nevertheless t..at if we find a minimum of (67) then by the above arguments the
minimum i{s really of the form we described above so there is no loss by considering the
minimizing set described in (67).

And one proves easily the following result using either the concentration-compactness
arguments with symmetry ([ 1)) or the simpler fact that if p™ is bounded in ) n H‘(IP)
and is spherically symmetric then p™ is compact in LP(l?) for 1 <p <6 (see
W. Strauss [46], H. Berestycki and P. L. Lions (5], P. L. Lions [37])). Before stating the

result we just need a notation
S 1, 3
I(m,,e00,m ) = InE(E[® ,000,0,.) /9, cH(R), [ prax <® ,
1 A 1 A i n?

(68) /, oio;dx =mb, for 1€, 32N, ML, JCn,
R

P Dp, T Tp are spherically symmetric}

where m; > 0 for all i ¢ {1,...,A}.
Theorem VIII.1: Assume that a > (8+6)/2, a + SAy > 6+B. Then, every ninimizing sequence
of (67) is relatively compact in n‘(n?) (and pT is relatively compact in L‘(l?)) if

and only if the following condition holds

A
(69) 1% ¢ 15(m,...m), for all m € [0,1](1<4€A) such that ] = <A .

i g=1 i

*a

In particular there exists a minimum of (67) if (69) holds.

Remarks: 1) As in many results above, the condition (69) seems dAifficult to check for

v

A € 2 and in fact numerical computations that the existence of a minimum is highly

¥ ¥

dependent on A.

4
DA AR AP

2) Again it is possible to treat the case when h = 0. a]

For realistic interactions and HF problems (thus including spin-orhit forces) the

+

spherical symmetry is imposed by considering ('1""’°A) such that Pyr Dp: Thar Tp are

ULVIRS Y

v ¥ ¥
¢ T
P

spherically symmetric; pn(x,y). Dp(x,y) satisfy pq(Rx,Ry) = p{x,y) for all rotations

- r
(S
.

R of R3 and for all g = n,p and Jor Jp have the form

X
Tgln) =2 |Jq|(r) '

r_ v
t‘ l‘ "
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and with these oconstraints similar results hold.

»
s
"ot ol nlal s

2
P

As we already explained above two arguments may be invoked to prove the analogues of
Theorem VIII.1 in the case of more realistic interactions V(x~y). Either one applies the

general arguments of P. L. Lions [34]) (concentration-compactness principle in presence of

oal 2t s )

symnetries), or one may use mOore standard compactness arguments due to spherical symmetry
as mentioned above. In the latter case however one needs to explain how to pass to the
limit on the tera

[ v(x-y)lp_(x.y)lzdﬁ!
3

IJ*R
where 0, is the density corresponding to a minimising sequence (o',‘,.--,o:) (this
bounded in m'(R?)). We thus assume we have spherically symmetric configurations i.e.

Pu(RX,Ry) = p (x,y) ¥ x,y € »?
for all notations R of ‘3_ Since V decays at infinity it is enough to explain why,
for all R ¢ =, ID-(x,y)Iz {x-y[<r 18 compact on 1tV (23x2%). We then introduce

g0 = [ o (x| ey
| %=y | <R
which is spherically symmetric ({ (Rx) = {,{x)). And {, is bounded in w"‘(l3) by the

definition of o and H' bounds on ¢}. By P. L. Lions [37], we ses that Cu(x) < -|£-5-
x

1
on ®. Therefore, if we prove that ;(? is bounded in L‘(l’), it is then easy to

conclude that {, 1s compact in 1'..1(13). But

1,
[ 2

2 a_
‘3 " ax <c | 3(2 I '0:(:)' IO:(Y)l W)/zd*

R i |x-y|<Rr

1
<cef 10 1 1e%al? 1ol 2ay)2 ax
R 1 [x-y[<R

1
celf 1ofml( [ [oin|iay)2a
i R |x=y|<R

1 2 1
: cel ([0 2ax)2(f ([ et |ay)ax)’?
" i R R |x-y|<r S
1 RENEN
2 < ¢ AR ' T
g N -
- .
l for various constants C > 0 and we conclude. B
- :,_..-g "
'-: liu-.:.i
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We now conclude this section by a brief discussion of cylindrical sysmetric

1
solutions. Let us denote by s = (x%ﬂt%)/z, T=xXy if x = (x,,xz,xa) is a generic point

of ®. Arguments similar to those given above lead to the following problem ’ Y
3 :L\
LA%Y

1% = me(Rle,,...00,0/0, € B'(®), [, prax < =, (65) hords, ¢

(70) R ) ;

o_,p are functions of s, ¢ only} ,

n p'tn'tp

that we extend in the following class of problems

-
Ic(nv-.-,nl) =- Inf{![v,.n-w,\l/oi 31(13)7 f‘a viojdx - "1613

(71) for 1<4, $ SN, N+1 € 1, } €Ay 1‘3 PTaK < =1 4P LT T, -
are functions of s, £ only} , },:.;.E'.:

e

where my,...,m, are nonnegative constants. e
Again, applying the concentration~compactness arguments we see that if a > (B8+8)/2, .

o + SAy > 648, then every minimizing sequence of (70) is relatively compact up to a :-:""?;:
translation in 2z 1if and only if the following condition holds E::‘:-;‘E

c c c
I <1 (m",...,nl) + I (1~n1,...,‘l-1|‘) for all ‘1 e [0,1]

.

XAHA:
e

(72) A )
(1<i<A) such that | m € (0,A) . 3.:-.,
= e

and there exists a minimum of (70) if (72) holds.

C e e
A
N

)




IX. The shape of the nucleus and s try breakings.

Admitting that the HF approximation is valid, then the ground state of a nucleus is
supposed to be described by the minima of the various HF minimization problems studied in
Sections IIX = VI. 1In particular the shape of the nucleus will be determined by the
dengity p: the nucleus is spherical i{f p is spherically symmetric, or more generally
has the symmetries that ¢ possesses.

If we keep the notations of the preceding section, we see that the spherical symmetry
is broken if I® > I but it may happen that I® > 1€ = 1 in which case the spherical
symmetry is broken but the minimum (if it exists) still preserves the cylindrical

symmetry. While if I® > 1° > I then even the cylindrical symmetry is broken. All these

phenomena (and many others related to more elaborate symmetries) are known to occur in }:
A

Nuclear Physics and are very important. The mechanism behind these symmetry breakings is N

not all all understood neither from the Physics viewpoint nor from the mathematical :;

viewpoint. We propose here some vague explanations on some of these symmetry breakings and
we consider as examples various simpler model problems which could help understanding these

phenomena. Before going into these examples, we would like to comment on the physical

meaning and implications of such deformed HF ground states. Since the original Hamiltonian
is rotationally invariant we know that the real ground state should have a "good total
angular momentum”. This aspect which, at first sight, seems to be a defect of HF theory
hides, on the contrary, very nice features as briefly explained in the following. 1In order
to restore the symmetry the HF solution is reinterpreted as an intrinsic state capable of
rotating onto intself. The gquantitation of such collective rotational motion, achieved by
A. Bohr (11] a long time ago, leads to a model predicting excited states whose spectrum
should obey the simple law: lI - %;-I(I+1) where I is the total angular momentum and

g is the inertia momentum. Such typical rotational spectra are exhibited by serval nuclei
(152"5‘Sm. 15‘6&, 168!:) anrd the HF theory do predict in their cases a deformed intrinsic
structure. It must be pointed out here that such interpretation of broken symmetries in
terms of collective modes is currently used in various branches of modern physics (see J.

Goldstone modes [22), Higgs modes in non Abelian Gauge theory [24]). Thus, it appears that
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the HF method is a wmuch more powerful tool than it looks a priori from a strict
mathematical viewpoint.
We begin with a very simple example

Example 1: let B be a ball centered at 0 in ®3. We consider the minimigation problem
3 2 ¥ 1

7 ine{ ] ]B|v\.i| ax - A [ o£C ] uj)dx / u, € Hy(B)
i=1 i=1

(73)
. for all 1< 1 <A, fouuax=8, for 1<4, 3¢ a}
where A > 0 is a parameter, ui(1<i<A) are real-valued functions, f is a continuous

. function on R’ satisfying for example

(74) = s <o
e

A
We claim that if A =2 or if A =3 then for A small the density p = ) uf is not
i=1
spherically symmetric where (u,,...,uh) is any minimum of the above minimization

Dl R NN '.'4

problem. (The existence of minima is a standard exercise on functional analysis since we
are dealing with a bounded domain B and the nonlinearity satisfies some appropriate
growth condition). To prove this claim, we denote by E(A) the value of the above infimum

and we observe that for A = 0, E(0) is nothing but the sum of the first A eigenvalues

RN I

of the operator ~A in H;(B) and that the corresponding minima for A =2 or 3 are

such that p is not spherically symmetric. To concluderwe just have to prove that E(A)
A

converges to E(0) and that minima (u1'---'u:) of E(A) converge (extracting enough

subsequences) to the minima of E(0). Indeed, observe that

L hAL

E{A) € E(0) + CA, for some C > 0

while (74) implies easily that for some C > 0

Lt )

i)

? [ 2ax + A [ £ (pMax < ¢
_-15“1 pt (P dx
Ao £ oMax 2 0 .

B 230

This yields on one hand that E(}) A:O E(0) and on the other hand if u:(1<i<n) converge

weakly in HS(B) to u; then
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Yu dx € lim Vu ax
- B 1 0 =1 2 1

A A2 - A
. <lim { ) In"’“x' ax + A [ £ (pT1ax]
. 4 A+0  i=1

€ lim E(A) = ®(0)
A+0

and since the constraints pass to the limit, our claim is proved.

One sees what 1s the mechanism involved in the above example and it seems that this

mechanism plays a role in Nuclear Physics: roughly speaking it is expected that symmetry

breakings "have more chances to occur" for those A such that the combinatorics of filling

our Slater determinants with spherical harmonics (as we explained in the preceding section)

S
<A,

do not make possible the use of only the lowest possible eigenvalues (or energy levels)

of (-A'). This explanation is very much related to what is called in Physics magical

numbers. Of course, this tentative explanation has to be confirmed or infirmed by the

a

examination of more realistic problems than {73). We propose another model problem for

which it would already be interesting to decide whether there is symmetry breaking or
not. We will only mention the case A = 2.

Example 2: We consider now

1(1,1) = Inf{]f 3|Vu|2 + |Vvlzdx - [ uz(x)v(x-y)vz(y)dxdy /
R l3x.3
{75)

u, ven (@, [ 3uzdx-]3v2ax- 1}
R R

where A > 0 and V is spherically symmetric and satisfies V = Vy + v2 where

Ve Lpi(la)(i = 1,2) for some p,6 € [-23-' ©), The main difference between (75) and HF

i
problems is the fact that we do not assume anymore that f ‘3 uv dx = 0 and it is possible

that this type of constraints plays an important role in symmetry breakings. We prove
below that as soon as I(1,1) < 0 all minimizing sequences are relatively compact in

H‘(l‘.’) up to a traanslation and thus there exists a minimum of (75). By symmetrization
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techniques minima are spherically symmetric if V is nonnegative, nonincreasing with
respect to |x|. The case when V does not have these properties is totally open.
To prove the above claim, we have to show (using the concentration-compactness method)
that if I(1,1) < 0 then
I(1,1) < I(A,u) + I(1=A,1=p) for 0 <€ A < 1, 0 € u €1 and 0 < A4y < 2
where I(A,u) stands for the same infimum as in (75) but with the constraints

f 3 uzdx = X, ] R3 viax = Y. The proof of these strict inequalities uses the fact that if

»
A=0 orif uy=0 then I(A,u) =0 while if 0 <A <1, 0 < u<1 then I(A,u) = Ay
!(%.% where

E(s,t) = Inf{s [ 3|Vu|zdx vt f 3|Vu|zdx - [ Covix-pviiyaxay /
R R .

w ver (@), [, olax = [, v?ax = 1}
3 3
R R
and thus E(s,t) 1s nondecreasing with respect to 8 or to t. Observing next that Ay +
(1=2)(1=u) <€ 1 if 0 <A <1, 0<yu <1 we deduce the above strict subadditivity

inequality by remarking that

1 1 1 1
E(1,1) < B3}, ;'), B(1,1) < !(ﬁ, -

We conclude this section by mentioning that the study of various nucleii seems to
indicate that the mechanism we illustrated by the simple example 1 apparently &en not
cover all the possible ways the spherical symmetry is broken. To explain this claim, let
us first explain how spin dependence (and spin-orbit forces) makes the above description a
bit more complicated. Indeed, in such a case, the sequence of HF levels is typically of
the following form (1s 1/2 multiplicity 2, 1p 3/2 multiplicity 4, 1p 1/2 multiplicity 2,
14 5/2 multiplicity 6, 2s 1/2 multiplicity 2...) where the states (levels) are labelled as
it is usual by the set n, £, jJ where Jj denotes the eigenvalue of the total angular

momentum 3* ; + ;. Thus the degeneracy (multiplicity) of the level (n,%,j) is 23j+1.

With this scheme one checks that both nuclei ;20 and fzs have nucleon numbers
«60=
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compatible with a spherical HF solution built on the lowest levels or eigenvalues. Yet,

A
% Ny Yy
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the HF computations lead to solutions which are not spherical but deformed. 1In fact they

4.

correspond to axially deformed shapes i.s. solutions with cylindrical symmetry N
2 2 2 I

]

(5—?— + -2-5 - 1) which are prolate (i.e. f > 1, oblate corresponding to % < 1) - gee M. :ﬁ%

c ay

hobe!

Girod and B. Grammaticos [21); K. Xumar, Ch. Lagrange, M. Girod and B. Grammaticos [25]).
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X. External fieid method.

To present the external field method it is worth saying a few words on the numerical

computation of HF minimization problems. Because of the quite compliicated form of the

functionals one has to minimize, some numerical methods which are currently used (typicaliy
Galerkin type methods based on spherical harmonics, or two basis of spherical harmonics ’
centered at different points...) make difficult to avoid symmetries and seem to favor the
A possible local minima with spherical or cyiindrical symmetry. And in all cases the
E numerical methods break the translation invariance. These remarks explain why the standard
.: problem in the minimization of nonconvex functions of avoiding local minima in order to
find the absolute minimum seems even more acute in HF problems. One idea to avoid this ) >
3 difficulty is to deform the shape of the density by an external field acting on the system ;Ezéf
. as an additional constraint. As we wiil explain below this approach is not only useful for éisi
E numerical purposes but is also relevant for physics. :;5;
To explain the principle of the external fieid method, we consider a C1 functional :i‘?;
>
on a manifold M, bounded from below and we are interested in the minimization problem ;i:; ]
(76) E = Inf(E(w)|u e M} . &é:‘
Now if Q is some given ¢! functional, and q € R we consider the same mainimization tL.;l
probiem where we add the constraint Q(u) = q (which in HF problems represents the action ’ )
. of the external field)
; (77) E(q) = Inf{E(u) / u € M, Q(u) = q} .
It is obvious that E = Inf E(q) and that if this infimum is achieved at qy and if
i E(qy) is achieved at sozgR u, then u, is a minimum of (76). But observe also that if ;;SS»
5 we assume that at some q, E is differentiable, E'(qo) = 0 and that for g near qq t&:j;
. E(qg) is achieved at some ug differentiable with respect to q at qg, then L i a t:;;'
critical point of E. 1Indeed, uqo being a minimum of E(qo), there exists a Lagrange ”~3H
f multipliier 9 such that
; (78) E'(uqo) = GQ'(uqO)
. du

while if we denote by v, = EES 'q-q then differentiating the relations Q(uq) =q,
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E(uq) = E(q) we obtain

1= Q'(uqo) * Vg ¢+ 0= E'(uqo) * Vg .
Therefore applying v, to the equality (78), we obtain 8 = 0 and we conclude.
Finally, let us observe that if E(q) admits a minimum at Q. then roughly
speaking uqo is a local minimum of E. Hence, this method appears to be a way to explore
the local minima of E. Of course, one may use several constraints instead of one i.e.
Qilu) =q; for 1€ 1<k .
In HF problems in Nuclear physics, these forced constraints Q are mostly taken to be

linear in p 1i.e.

(79) QLeqreeeippl = IR3 Q(x)p (x)dx

for some function (field) Q on R:. 1In addition, they are chosen in such a way that the
added constraint measures the deformation of the nucleus (we give an example below).
Hence, if one computes

(80) l[q1,---.qk] = inf{z['1v-'-vvhl / I 3 '1';dx - Gij' Ql(""..."h, = q"
R

for 1< 4 < k}
for some HF functional E and where QqreeesQy are k external fields, then it is
possible to describe the energy of nucleii (even heavy ones) as a function of its shape.
And this seems to be relevant to the study of fission isomers and fission barriers (see
J. F. Berger, M. Girod and D. Gogny [6], M. Girod and B. Grammaticos [21]).

We now conclude this section by a simple example of an external field. In (79) one

v
*

can take for Q(x)

(81) Q(x) = (x% +x2 -2 xg)z(r)

2

U
where r = (x% + x§ + xg)/b and Z(r) is some kind of cut-off function such that @ is

AP S I
v e

bounded on R3. Of course, it is possible to analyze problems like (80) by the

concentration-compactness method and to write down necessary and sufficient conditions

to be even more out of reach than for the HF problems we considered in the preceding

sections.

t involving strict sub-additivity conditions. But the verification of these conditions seems
i
]
]
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XI. Time-dependent Hartree-Fock eguations.

The time-dependent Hartree-Fock equations (TDHF in short) are coupled nonlinear
Schridinger equations. Given any HF functional E(94,...,9,] as in the preceding

sections, TDHF equations may be written as follows

39
k 9E 3
(82) T o, [9yreeerw,) =0 on R x (0,®), 1<k <A .

Of course, to solve (82) one has to add initial conditions

(83) o(x,0) = od(x) on R, 1<k <A

where vg are given (1<k<A).

For example if E is given by (21), then (82) may be rewritten as

d¢ 2
Xk A 8 3
% " m A'k -3 aiv(p Vok] + WQk on R x (0,»), 1< k<A
where W = =-ap + % T - % Ap + 692.

For the motivations in Nuclear Physics for studying TDHF, we refer the reader to
H. Flocard [16].

We will not give results concerning the resolution of the Cauchy probiem (82), (83):
let us just mention the works by J. Ginibre and G. Veio [18), [19], [20]; for all
interactions except Skyrme's there is no special difficuity to solve (82) - (83). Many
mathematical results on systems like (82) are based on the various conservation laws
satisfied by solutions of (82): for example multiplying (82) respectively by 9; and

3
taking the imaginary part and by 3:5 and taking the real part one finds integrating

over '3

(84) f,a"’k'z"" is independent of t , 1<k < A
(85) ) E{94s+++,9,] 1is independent of t .

-
Similarly, one obtains that f 3 ’k’ldx is independent of t for 1 < k, £ < A,
R
We next observe that solutions of HF equations (up to unitary transform) lead to
stationary solutions of TDHF equations where stationary means that o, T are independent

of t: more precisely we have seen in the preceding sections that we may write the HF

-64~
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equations as

()] 3
. a’k [91000'00A] €9 ©on R, for 1<¢k<r .

Then obviously @y (x,t) = e “%a,(x) (1<k<A) defines a solution of (82).

In particular, any minimum of the HF minimization problems leads to a stationary
solution of TDHF equations. It is shown in 7. Cazenave and P. L. Lions [12} that, if tre
subadditivity conditions given in the preceding sections via the concentration-compactness
arguments hold, minima of HF minimization problems are orbitally stable in TDHF
equations. Let us also point out that similar arguments show that minima of the HF
minimization problems with additional symmetry constraints (see section VIII) are orbitaliy
stable with respect to perturbations with the aame symmetries.

But since all solutions of HF equations lead to stationary soliutions of TDHF

equations, the study of ail possibie solutions of HF equations presents some interest. In
particular one may look for critical points of E(¢1,...,¢A) with the additionai
orthogonality constraints. The only approach we know one might try is through min-max
principlies as it is done in H. Berestycki and P. L. Lions [5), P. L. Lions (38], ([39] for
reiated problems. This approach requires spherical symmetry of the functions (@q,¢.«,9,)-

We only have very partial existence results in that direction.

LY

-

In fact Nuclear Physics considerations (collisions of heavy ions) indicate that it

LT
Toly

Ay

would be interesting to find all periodic solutions of TDHF: again one has to define the

precise meaning of periodic solutions. For example, if no differences are made between
neutrons and protons, a solution of (82) is said to be periodic of period T 4if there
exists a unitary transform U such that

(94(T), 00es03(T)) = U(94(0),01,0,(0)) on R .
Observe that this implies that the densities p, T are indeed periodic of period T (in
the usual sense). In fact, an even more general (possibiy) notion of periodic soliutions

consists in requiring the density p(x,y) to be periodic. It seems, at ieast numericaiiy,

that there are many periodic soiutions of TDHF equations and this 1s another major open

question.
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.4 A final remark on this topic concerns the possibility of having stationary solutions
; of TDHF equations which are not obtained through solutions of HF equations. We illustrate
. this possibility on a simple example of a system of two nonlinear equations.
'} Example: We congiaer the following system of two coupled nonlinear Schrddinger equations
2
: ¥-1 3
j iwt-Ao=o ¢ on R x (0,»)
(86)
' 1, -8 =p""" % on B x (0,%)
.
N where o = (|o|2 + 'wlz) and 1 <Y < 5/3.
- Let w, m > 0; we look for solutions of (86) of the form
- o(x,t) = 8% (cos mt u(x) + sin mt v(x))
;: Vix,t) = Eimt(-sin mt u(x) + cos mt v(x)) .
t: And we find the following nonlinear system for u, v
- -Au + imv +wu =p" 4 in R
: (87)
. =Av - imu + wv = pY-1 v in R3 .
{- Observe that if we show there exist solutions (u,v) of (87) then the above ¢(x,t),
:} P(x,t) yield stationary solutions of (86) (p is independent of t). However, if ¢, ¥
S were solutions of (86) built through the stationary analoque of HF equations, this would
. imply that v = -iu. Thus, we want to exhibit solutions of (87) with v ¥ - iu. To this
; end we consider the following minimization problem
I = Min{J 3|Vu|2 + |Vv|2 + w|u|2 + m|v|2 + Re(im vu)dx/
o R
- (88)
. u veun'@®, [ S Pax =1} .
N R
This problem is solved as in [33] by the concentration~compactness arguments and thus
o there exists a minimum (u,v) of (88). Now, if we have v = -iu, this would imply
s :
K I> Min{f 3 2|Vu|2 + 2m|u|2 + m|u|2dx/u€H1(!?), f 3|u'Zde = ZdY} -~
N R R S
- REY
and this lagt minimum is strictly larger than i
<) -::\:\-‘"
-~ -_.:_-'
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\ t e on '
, 2 Min{[ 3|Vu|2 + wlu)faxsuen’ @), [ lu|?Yax = 27V} = b
: R R :':\'\.' ‘:
5 holy
4 = Min{/ 3|Vu|2 + w|u|2dx/ucﬂ1(l?), I 3|u|27dx =1} . :d;f,

R R ;ﬁvf;

o .
- On the other hand, we have taking v = 0 in (88)

! I < Min{J |Vu|2 + w|u|2dx/uen1(ls), ) |u|2de =1}

3 3
R R
and the contradiction proves our claim on the existence of a solution of (87) with v ¥ =iu.

b
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XII. Hartree-Fock-Bobolyubov approximations

In this section, we want to present a different approach to the study of nucleii
namely the so-called Hartree-Fock-Bogolyubov approximation (N. N. Bobolyubov [10],
C. Bloch and A. Messiah (9], J. B. Bardeen, L. N. Cooper and J. R. Schrieffer [(3]). We
will not attempt here to explain the Hartree-Fock-Bogolyubov method and we refer to the
interested reader to J. Decharge and D. Gogny (14], J. G. Valatin [47]). We will only
describe the typical minimization problem arising in this theory which may be thought of as
an improved approximation of the A-body problem considered in section II. To simplify, we
will again ignore the spin dependence and spin-orbit forces. The minimizing set is given

by

2,3 1,3 ¢
M= {lu,v),,, € L9(R) x B(R), f“3 u vy + ugvidx =0

» w
[ ,uu +vvdx= 61

e A B 6

y forall 1,331 | [ Glv|Pax = a) .
131 x

We now introduce the Hartree-Fock-Bobolyubov problem (HFB in short)

2
Ing{] 3 %; i§1|Vvilzdx +-% ] | e(x)Vix-y)p(y)axdy +
R

R *RB

[ viep oty |?ax + 3 [ [ vixey) ki) | 2axay

-1
2
'y e’

[
R3"
/ (“’.'vi)j.)‘ € M}

2 * *
where p(x) = 1 |v,(x)|%, ptx,y) = ] v,ovity), k(x,y) = § w (x)vily) for x, ye 2.
i>% i>1 i>1

And one may choose for example (as in [14]) the potential
vix) = [ W exp(-|x|2/ud)
i=1,2
where Wy, Uy are constants.
Most of the results, remarks and open problems given in the preceding sections may be

adapted to the study of problem (89). Before explaining how we may apply the

concentration-compactness program on this problem, let us first mention the important

~68-
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connection between the above problem and more standard HF problems. Deriving the Euler-

lLagrange equations of the above minimization problem (which by the way are called Hartree-
Fock-Bogolyubov equations) one sees immediately that if (;1,...,;A) is a solution of the
= v = = hE
HF equations then choosing v; = vy for 1< 41<A, v, 30 for i >A, u 20 for th‘
o1
1 <4 <A, uy arbitrary satisfying
/ Yax = 6
u,u =
n3 173 i3
for 1 +a< 4i,j, we £ind a particular (“trivial") solution (u;,v;)y of the HFB
equations. In some vague sense, the HFB problem contains the HF problem.
We now conclude with a brief explanation on the way we may apply the concentration-
compactness arguments to the above problem. We apply the usual concentration-compactness

lemma to the density p. And we see that minimizing sequences (“1'V1)1>1 of the above

minimization problem are compact up a translation in LZ(R;) x H‘(l;) if and only if

I < I(My,Mz,N) + I(M},M},-N)
for all hermitian matrices M,, M,, M}, M), N satisfying M, M, Mj, My 2> 0,
Tr(M,) € [0,A], Tr(M]) = A - Tri(My), M, + M, + M} + M) = 4 and |(,5)] < (H1E.€)‘/2
(sz,géa, v E € 22, vhere in adaition 0 ¥ My o+ My, Mg+ My ¥ 1. In the above inequality
I = Inf{I(M{,My,0) / Mq,My > O, My = My, My = My, M + My = 4, Tr(M,) = A} and finally,
denoting by P(i,j) the 1i-j component of the matrix P (1<i,Jj), the definition of

I(M,,M;,N) is given by

hz
T4y My = 1nt{[ o lvv, |2ax + 2 ! !3 P (x)V(x-~y)o (y)axdy +
R XR
1 f f 2 1 f f 2 - 2 1
-3 Vix=y)|p(x,y)|“dxay + 3 V(x-y) | k(x,y)| “dxdy / (u,v) e L%,
R3!R3 ll:’xll.3

i * ax 0, [ Tax =M (1,3), [ Y 4 uv,a 1,9}
EVﬂj m(dh Euﬁj 2 3 euﬂj %nx N(i,3) .

In fact, as in the case of HF problems, using the various invariances of the above problems
it is possible to restrict the above strict subadditivity inequalities to a particular

class but we will not pursue this matter here.
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